Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 402(2): 871-81, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22057722

RESUMO

Chemical reactivity of asbestos tremolite from Italy and USA localities and Union Internationale Contre le Cancer (UICC) crocidolite was studied in relation to Fe content, oxidation state, and structural coordination. Direct correlation between amount of Fe(2+) at the exposed M(1) and M(2) sites of the amphibole structure and fiber chemical reactivity was established. The in vitro toxicity of the same samples was investigated on human alveolar A549 cell line. Relationship between crystal-chemical features and cell toxicity is not straightforward. UICC crocidolite has Fe content and chemical reactivity largely higher than that of tremolite samples, but all show comparable in vitro toxic potential. Results obtained evidenced that Fe topochemistry is not a primary factor for induced cell toxicity, though it accounts for asbestos chemical reactivity (and possibly genotoxicity).


Assuntos
Amiantos Anfibólicos/química , Amiantos Anfibólicos/toxicidade , Compostos Ferrosos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Relação Estrutura-Atividade , Propriedades de Superfície
2.
Sci Rep ; 12(1): 2599, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35173251

RESUMO

Volcanic eruptions are shallow phenomena that represent the final stage of density- and viscosity- driven processes of melt migration from source rocks at upper mantle depths. In this experimental study, we investigated the effect of pressure (0.7-7.0 GPa) and temperature (1335-2000 °C) on the viscosity and the atomic melt structure of a synthetic anhydrous primitive alkaline basalt, an analogue of the pre-eruptive magma that likely feeds the Campi Flegrei Volcanic District at present day. Obtained viscosities (0.5-3.0 Pa s), mobility (0.1-0.4 g cm3 Pa-1 s-1) and ascent velocity (1.5-6.0 m yr-1) are presented to support geochemical and geophysical observations of Campi Flegrei as a critical volcanic district currently undergoing gradual magma recharge at depth.

3.
Sci Rep ; 11(1): 11829, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34088914

RESUMO

The occurrence of phlogopite and amphibole in mantle ultramafic rocks is widely accepted as the modal effect of metasomatism in the upper mantle. However, their simultaneous formation during metasomatic events and the related sub-solidus equilibrium with the peridotite has not been extensively studied. In this work, we discuss the geochemical conditions at which the pargasite-phlogopite assemblage becomes stable, through the investigation of two mantle xenoliths from Mount Leura (Victoria State, Australia) that bear phlogopite and the phlogopite + amphibole (pargasite) pair disseminated in a harzburgite matrix. Combining a mineralogical study and thermodynamic modelling, we predict that the P-T locus of the equilibrium reaction pargasite + forsterite = Na-phlogopite + 2 diopside + spinel, over the range 1.3-3.0 GPa/540-1500 K, yields a negative Clapeyron slope of -0.003 GPa K-1 (on average). The intersection of the P-T locus of supposed equilibrium with the new mantle geotherm calculated in this work allowed us to state that the Mount Leura xenoliths achieved equilibrium at 2.3 GPa /1190 K, that represents a plausible depth of ~ 70 km. Metasomatic K-Na-OH rich fluids stabilize hydrous phases. This has been modelled by the following equilibrium equation: 2 (K,Na)-phlogopite + forsterite = 7/2 enstatite + spinel + fluid (components: Na2O,K2O,H2O). Using quantum-mechanics, semi-empirical potentials, lattice dynamics and observed thermo-elastic data, we concluded that K-Na-OH rich fluids are not effective metasomatic agents to convey alkali species across the upper mantle, as the fluids are highly reactive with the ultramafic system and favour the rapid formation of phlogopite and amphibole. In addition, oxygen fugacity estimates of the Mount Leura mantle xenoliths [Δ(FMQ) = -1.97 ± 0.35; -1.83 ± 0.36] indicate a more reducing mantle environment than what is expected from the occurrence of phlogopite and amphibole in spinel-bearing peridotites. This is accounted for by our model of full molecular dissociation of the fluid and incorporation of the O-H-K-Na species into (OH)-K-Na-bearing mineral phases (phlogopite and amphibole), that leads to a peridotite metasomatized ambient characterized by reduced oxygen fugacity.

4.
Anal Bioanal Chem ; 396(8): 2889-98, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20217397

RESUMO

Asbestos fibers are an important cause of serious health problems and respiratory diseases. The presence, structural coordination, and oxidation state of iron at the fiber surface are potentially important for the biological effects of asbestos because iron can catalyze the Haber-Weiss reaction, generating the reactive oxygen species *OH. Literature results indicate that the surface concentration of Fe(III) may play an important role in fiber-related radical formation. Amphibole asbestos were analyzed by X-ray photoelectron spectroscopy (XPS) and Mössbauer spectroscopy, with the aim of determining the surface vs. bulk Fe(III)/Fe(tot) ratios. A standard reference asbestos (Union Internationale Contre le Cancer crocidolite from South Africa) and three fibrous tremolite samples (from Italy and USA) were investigated. In addition to the Mössbauer spectroscopy study of bulk Fe(III)/Fe(tot) ratios, much work was dedicated to the interpretation of the XPS Fe2p signal and to the quantification of surface Fe(III)/Fe(tot) ratios. Results confirmed the importance of surface properties because this showed that fiber surfaces are always more oxidized than the bulk and that Fe(III) is present as oxide and oxyhydroxide species. Notably, the highest difference of surface/bulk Fe oxidation was found for San Mango tremolite--the sample that in preliminary cytotoxicity tests (MTT assay) had revealed a cell mortality delayed with respect to the other samples.

5.
Free Radic Biol Med ; 133: 21-37, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30071299

RESUMO

Iron and its role as soul of life on Earth is addressed in this review as iron is one of the most abundant elements of our universe, forms the core of our planet and that of telluric (i.e., Earth-like) planets, is a major element of the Earth's crust and is hosted in an endless number of mineral phases, both crystalline and amorphous. To study iron at an atomic level inside the bulk of mineral phases or at its surface, where it is more reactive, both spectroscopy and diffraction experimental methods can be used, taking advantage of nearly the whole spectrum of electromagnetic waves. These methods can be successfully combined to microscopy to simultaneously provide chemical (e.g. iron mapping) and morphological information on mineral particles, and shed light on the interaction of mineral surfaces with organic matter. This review describes the crystal chemistry of iron-bearing minerals of importance for the environment and human health, with special attention to iron in toxic minerals, and the experimental methods used for their study. Special attention is devoted to the Fenton-like chain reaction involving Fe2+ in the formation of highly reactive hydroxyl radicals. The final part of this review deals with release and adsorption of iron in biological fluids, coordinative and oxidative state of iron and in vitro reactivity. To disclose the very mechanisms of carcinogenesis induced by iron-bearing toxic mineral particles, crystal chemistry and surface chemistry are fundamental for a multidisciplinary approach which should involve geo-bio-scientists, toxicologists and medical doctors.


Assuntos
Radical Hidroxila/química , Ferro/química , Fibras Minerais/análise , Minerais/química , Carcinogênese/efeitos dos fármacos , Humanos , Microscopia Eletrônica de Transmissão , Oxirredução/efeitos dos fármacos , Análise Espectral
6.
Sci Rep ; 9(1): 12586, 2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31467318

RESUMO

Diamonds and their inclusions are unique fragments of deep Earth, which provide rare samples from inaccessible portions of our planet. Inclusion-free diamonds cannot provide information on depth of formation, which could be crucial to understand how the carbon cycle operated in the past. Inclusions in diamonds, which remain uncorrupted over geological times, may instead provide direct records of deep Earth's evolution. Here, we applied elastic geothermobarometry to a diamond-magnesiochromite (mchr) host-inclusion pair from the Udachnaya kimberlite (Siberia, Russia), one of the most important sources of natural diamonds. By combining X-ray diffraction and Fourier-transform infrared spectroscopy data with a new elastic model, we obtained entrapment conditions, Ptrap = 6.5(2) GPa and Ttrap = 1125(32)-1140(33) °C, for the mchr inclusion. These conditions fall on a ca. 35 mW/m2 geotherm and are colder than the great majority of mantle xenoliths from similar depth in the same kimberlite. Our results indicate that cold cratonic conditions persisted for billions of years to at least 200 km in the local lithosphere. The composition of the mchr also indicates that at this depth the lithosphere was, at least locally, ultra-depleted at the time of diamond formation, as opposed to the melt-metasomatized, enriched composition of most xenoliths.

7.
Sci Rep ; 7(1): 14696, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29089634

RESUMO

Among asbestos minerals, fibrous riebeckite (crocidolite) and tremolite share the amphibole structure but largely differ in terms of their iron content and oxidation state. In asbestos toxicology, iron-generated free radicals are largely held as one of the causes of asbestos malignant effect. With the aim of clarifying i) the relationship between Fe occurrence and asbestos surface reactivity, and ii) how free-radical generation is modulated by surface modifications of the minerals, UICC crocidolite and fibrous tremolite from Maryland were leached from 1 day to 1 month in an oxidative medium buffered at pH 7.4 to induce redox alterations and surface rearrangements that may occur in body fluids. Structural and chemical modifications and free radical generation were monitored by HR-TEM/EDS and spin trapping/EPR spectroscopy, respectively. Free radical yield resulted to be dependent on few specific Fe2+ and Fe3+ surface sites rather than total Fe content. The evolution of reactivity with time highlighted that low-coordinated Fe ions primarily contribute to the overall reactivity of the fibre. Current findings contribute to explain the causes of the severe asbestos-induced oxidative stress at molecular level also for iron-poor amphiboles, and demonstrate that asbestos have a sustained surface radical activity even when highly altered by oxidative leaching.

8.
J Hazard Mater ; 298: 282-93, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26073382

RESUMO

Although asbestos represents today one of the most harmful contaminant on Earth, in 72% of the countries worldwide only amphiboles are banned while controlled use of chrysotile is allowed. Uncertainty on the potential toxicity of chrysotile is due to the fact that the mechanisms by which mineral fibres induces cyto- and geno-toxic damage are still unclear. We have recently started a long term project aimed at the systematic investigation of the crystal-chemistry, bio-interaction and toxicity of the mineral fibres. This work presents a systematic structural investigation of iron in asbestos and erionite (considered the most relevant mineral fibres of social and/or economic-industrial importance) using synchrotron X-ray absorption and Mössbauer spectroscopy. In all investigated mineral fibres, iron in the bulk structure is found in octahedral sites and can be made available at the surface via fibre dissolution. We postulate that the amount of hydroxyl radicals released by the fibers depends, among other factors, upon their dissolution rate; in relation to this, a ranking of ability of asbestos fibres to generate hydroxyl radicals, resulting from available surface iron, is advanced: amosite > crocidolite ≈ chrysotile > anthophyllite > tremolite. Erionite, with a fairly high toxicity potential, contains only octahedrally coordinated Fe(3+). Although it needs further experimental evidence, such available surface iron may be present as oxide nanoparticles coating and can be a direct cause of generation of hydroxyl radicals when such coating dissolves.


Assuntos
Ferro/química , Fibras Minerais/toxicidade , Amianto/química , Amianto/toxicidade , Compostos Férricos/química , Compostos Férricos/toxicidade , Radical Hidroxila/análise , Indicadores e Reagentes , Padrões de Referência , Solubilidade , Espectroscopia de Mossbauer , Difração de Raios X , Zeolitas/química , Zeolitas/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA