Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
NMR Biomed ; 35(1): e4621, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34609036

RESUMO

MR spectroscopic imaging (MRSI) noninvasively maps the metabolism of human brains. In particular, the imaging of D-2-hydroxyglutarate (2HG) produced by glioma isocitrate dehydrogenase (IDH) mutations has become a key application in neuro-oncology. However, the performance of full field-of-view MRSI is limited by B0 spatial nonuniformity and lipid artifacts from tissues surrounding the brain. Array coils that multiplex RF-receive and B0 -shim electrical currents (AC/DC mixing) over the same conductive loops provide many degrees of freedom to improve B0 uniformity and reduce lipid artifacts. AC/DC coils are highly efficient due to compact design, requiring low shim currents (<2 A) that can be switched fast (0.5 ms) with high interscan reproducibility (10% coefficient of variation for repeat measurements). We measured four tumor patients and five volunteers at 3 T and show that using AC/DC coils in addition to the vendor-provided second-order spherical harmonics shim provides 19% narrower spectral linewidth, 6% higher SNR, and 23% less lipid content for unrestricted field-of-view MRSI, compared with the vendor-provided shim alone. We demonstrate that improvement in MRSI data quality led to 2HG maps with higher contrast-to-noise ratio for tumors that coincide better with the FLAIR-enhancing lesions in mutant IDH glioma patients. Smaller Cramér-Rao lower bounds for 2HG quantification are obtained in tumors by AC/DC shim, corroborating with simulations that predicted improved accuracy and precision for narrower linewidths. AC/DC coils can be used synergistically with optimized acquisition schemes to improve metabolic imaging for precision oncology of glioma patients. Furthermore, this methodology has broad applicability to other neurological disorders and neuroscience.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Glioma/diagnóstico por imagem , Glutaratos/análise , Isocitrato Desidrogenase/fisiologia , Imageamento por Ressonância Magnética/métodos , Adulto , Neoplasias Encefálicas/metabolismo , Feminino , Glioma/metabolismo , Humanos , Isocitrato Desidrogenase/genética , Masculino , Mutação
2.
J Magn Reson Imaging ; 56(1): 121-133, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34958166

RESUMO

BACKGROUND: Absolute quantification of metabolites in MR spectroscopic imaging (MRSI) requires a stable reference signal of known concentration. The Electronic REference To access In vivo Concentrations (ERETIC) has shown great promise but has not been applied in patients and 3D MRSI. ERETIC hardware has not been integrated with receive arrays due to technical challenges, such as coil combination and unwanted coupling between multiple ERETIC and receive channels, for which we developed mitigation strategies. PURPOSE: To develop absolute quantification for whole-brain MRSI in glioma patients. STUDY TYPE: Prospective. POPULATION: Five healthy volunteers and three patients with isocitrate dehydrogenase mutant glioma (27% female). Calibration and coil loading phantoms. FIELD STRENGTH/SEQUENCE: A 3 T; Adiabatic spin-echo spiral 3D MRSI with real-time motion correction, Fluid Attenuated Inversion Recovery (FLAIR), Gradient Recalled Echo (GRE), Multi-echo Magnetization Prepared Rapid Acquisition of Gradient Echo (MEMPRAGE). ASSESSMENT: Absolute quantification was performed for five brain metabolites (total N-acetyl-aspartate [NAA]/creatine/choline, glutamine + glutamate, myo-inositol) and the oncometabolite 2-hydroxyglutarate using a custom-built 4x-ERETIC/8x-receive array coil. Metabolite quantification was performed with both EREIC and internal water reference methods. ERETIC signal was transmitted via optical link and used to correct coil loading. Inductive and radiative coupling between ERETIC and receive channels were measured. STATISTICAL TESTS: ERETIC and internal water methods for metabolite quantification were compared using Bland-Altman (BA) analysis and the nonparametric Mann-Whitney test. P < 0.05 was considered statistically significant. RESULTS: ERETIC could be integrated in receive arrays and inductive coupling dominated (5-886 times) radiative coupling. Phantoms show proportional scaling of the ERETIC signal with coil loading. The BA analysis demonstrated very good agreement (3.3% ± 1.6%) in healthy volunteers, while there was a large difference (36.1% ± 3.8%) in glioma tumors between metabolite concentrations by ERETIC and internal water quantification. CONCLUSION: Our results indicate that ERETIC integrated with receive arrays and whole-brain MRSI is feasible for brain metabolites quantification. Further validation is required to probe that ERETIC provides more accurate metabolite concentration in glioma patients. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.


Assuntos
Encéfalo , Glioma , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Eletrônica , Feminino , Glioma/diagnóstico por imagem , Glioma/metabolismo , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Estudos Prospectivos , Água
3.
NMR Biomed ; 34(5): e4411, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32946145

RESUMO

Spectral editing in in vivo 1 H-MRS provides an effective means to measure low-concentration metabolite signals that cannot be reliably measured by conventional MRS techniques due to signal overlap, for example, γ-aminobutyric acid, glutathione and D-2-hydroxyglutarate. Spectral editing strategies utilize known J-coupling relationships within the metabolite of interest to discriminate their resonances from overlying signals. This consensus recommendation paper provides a brief overview of commonly used homonuclear editing techniques and considerations for data acquisition, processing and quantification. Also, we have listed the experts' recommendations for minimum requirements to achieve adequate spectral editing and reliable quantification. These include selecting the right editing sequence, dealing with frequency drift, handling unwanted coedited resonances, spectral fitting of edited spectra, setting up multicenter clinical trials and recommending sequence parameters to be reported in publications.


Assuntos
Consenso , Espectroscopia de Prótons por Ressonância Magnética , Calibragem , Prova Pericial , Glioma/genética , Humanos , Isocitrato Desidrogenase/genética , Metaboloma , Córtex Motor/metabolismo , Mutação/genética , Lobo Occipital/metabolismo
4.
NMR Biomed ; 34(5): e4309, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32350978

RESUMO

Magnetic resonance spectroscopic imaging (MRSI) offers considerable promise for monitoring metabolic alterations associated with disease or injury; however, to date, these methods have not had a significant impact on clinical care, and their use remains largely confined to the research community and a limited number of clinical sites. The MRSI methods currently implemented on clinical MRI instruments have remained essentially unchanged for two decades, with only incremental improvements in sequence implementation. During this time, a number of technological developments have taken place that have already greatly benefited the quality of MRSI measurements within the research community and which promise to bring advanced MRSI studies to the point where the technique becomes a true imaging modality, while making the traditional review of individual spectra a secondary requirement. Furthermore, the increasing use of biomedical MR spectroscopy studies has indicated clinical areas where advanced MRSI methods can provide valuable information for clinical care. In light of this rapidly changing technological environment and growing understanding of the value of MRSI studies for biomedical studies, this article presents a consensus from a group of experts in the field that reviews the state-of-the-art for clinical proton MRSI studies of the human brain, recommends minimal standards for further development of vendor-provided MRSI implementations, and identifies areas which need further technical development.


Assuntos
Consenso , Espectroscopia de Ressonância Magnética , Neuroimagem , Encéfalo/diagnóstico por imagem , Prova Pericial , Humanos , Metaboloma
5.
NMR Biomed ; 34(5): e4364, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33089547

RESUMO

Long acquisition times due to intrinsically low signal-to-noise ratio and the need for highly homogeneous B0 field make MRS particularly susceptible to motion or scanner instability compared with MRI. Motion-induced changes in both localization and shimming (ie B0 homogeneity) degrade MRS data quality. To mitigate the effects of motion three approaches can be employed: (1) subject immobilization, (2) retrospective correction, and (3) prospective real-time correction using internal and/or external tracking methods. Prospective real-time correction methods can simultaneously update localization and the B0 field to improve MRS data quality. While localization errors can be corrected with both internal (navigators) and external (optical camera, NMR probes) tracking methods, the B0 field correction requires internal navigator methods to measure the B0 field inside the imaged volume and the possibility to update the scanner shim hardware in real time. Internal and external tracking can rapidly update the MRS localization with submillimeter and subdegree precision, while scanner frequency and first-order shims of scanner hardware can be updated by internal methods every sequence repetition. These approaches are most well developed for neuroimaging, for which rigid transformation is primarily applicable. Real-time correction greatly improves the stability of MRS acquisition and quantification, as shown in clinical studies on subjects prone to motion, including children and patients with movement disorders, enabling robust measurement of metabolite signals including those with low concentrations, such as gamma-aminobutyric acid and glutathione. Thus, motion correction is recommended for MRS users and calls for tighter integration and wider availability of such methods by MR scanner manufacturers.


Assuntos
Consenso , Espectroscopia de Ressonância Magnética , Movimento (Física) , Prova Pericial , Humanos , Imageamento por Ressonância Magnética , Metaboloma , Ácido gama-Aminobutírico/metabolismo
6.
J Magn Reson Imaging ; 53(4): 1237-1250, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33179836

RESUMO

BACKGROUND: Metabolic imaging using proton magnetic resonance spectroscopic imaging (MRSI) has increased the sensitivity and spectral resolution at field strengths of ≥7T. Compared to the conventional Cartesian-based spectroscopic imaging, spiral trajectories enable faster data collection, promising the clinical translation of whole-brain MRSI. Technical considerations at 7T, however, lead to a suboptimal sampling efficiency for the spiral-out (SO) acquisitions, as a significant portion of the trajectory consists of rewinders. PURPOSE: To develop and implement a spiral-out-in (SOI) trajectory for sampling of whole-brain MRSI at 7T. We hypothesized that SOI will improve the signal-to-noise ratio (SNR) of metabolite maps due to a more efficient acquisition. STUDY TYPE: Prospective. SUBJECTS/PHANTOM: Five healthy volunteers (28-38 years, three females) and a phantom. FIELD STRENGTH/SEQUENCE: Navigated adiabatic spin-echo spiral 3D MRSI at 7T. ASSESSMENT: A 3D stack of SOI trajectories was incorporated into an adiabatic spin-echo MRSI sequence with real-time motion and shim correction. Metabolite spectral fitting, SNR, and Cramér-Rao lower bound (CRLB) were obtained. We compared the signal intensity and CRLB of three metabolites of tNAA, tCr, and tCho. Peak SNR (PSNR), structure similarity index (SSIM), and signal-to-artifact ratio were evaluated on water maps. STATISTICAL TESTS: The nonparametric Mann-Whitney U-test was used for statistical testing. RESULTS: Compared to SO, the SOI trajectory: 1) increased the k-space sampling efficiency by 23%; 2) is less demanding for the gradient hardware, requiring 36% lower Gmax and 26% lower Smax ; 3) increased PSNR of water maps by 4.94 dB (P = 0.0006); 4) resulted in a 29% higher SNR (P = 0.003) and lower CRLB by 26-35% (P = 0.02, tNAA), 35-55% (P = 0.03, tCr), and 22-23% (P = 0.04, tCho), which increased the number of well-fitted voxels (eg, for tCr by 11%, P = 0.03). SOI did not significantly change the signal-to-artifact ratio and SSIM (P = 0.65) compared to SO. DATA CONCLUSION: SOI provided more efficient MRSI at 7T compared to SO, which improved the data quality and metabolite quantification. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 2.


Assuntos
Encéfalo , Imageamento Tridimensional , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Estudos Prospectivos , Razão Sinal-Ruído
7.
Radiology ; 294(3): 589-597, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31909698

RESUMO

Background Isocitrate dehydrogenase (IDH) mutations are highly frequent in glioma, producing high levels of the oncometabolite D-2-hydroxyglutarate (D-2HG). Hence, D-2HG represents a valuable imaging marker for IDH-mutated human glioma. Purpose To develop and evaluate a super-resolution three-dimensional (3D) MR spectroscopic imaging strategy to map D-2HG and tumor metabolism in IDH-mutated human glioma. Materials and Methods Between March and September 2018, participants with IDH1-mutated gliomas and healthy participants were prospectively scanned with a 3-T whole-brain 3D MR spectroscopic imaging protocol optimized for D-2HG. The acquired D-2HG maps with a voxel size of 5.2 × 5.2 × 12 mm were upsampled to a voxel size of 1.7 × 1.7 × 3 mm using a super-resolution method that combined weighted total variation, feature-based nonlocal means, and high-spatial-resolution anatomic imaging priors. Validation with simulated healthy and patient data and phantom measurements was also performed. The Mann-Whitney U test was used to check that the proposed super-resolution technique yields the highest peak signal-to-noise ratio and structural similarity index. Results Three participants with IDH1-mutated gliomas (mean age, 50 years ± 21 [standard deviation]; two men) and three healthy participants (mean age, 32 years ± 3; two men) were scanned. Twenty healthy participants (mean age, 33 years ± 5; 16 men) underwent a simulation of upsampled MR spectroscopic imaging. Super-resolution upsampling improved peak signal-to-noise ratio and structural similarity index by 62% (P < .05) and 7.3% (P < .05), respectively, for simulated data when compared with spline interpolation. Correspondingly, the proposed method significantly improved tissue contrast and structural information for the acquired 3D MR spectroscopic imaging data. Conclusion High-spatial-resolution whole-brain D-2-hydroxyglutarate imaging is possible in isocitrate dehydrogenase 1-mutated human glioma by using a super-resolution framework to upsample three-dimensional MR spectroscopic images acquired at lower resolution. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Huang and Lin in this issue.


Assuntos
Neoplasias Encefálicas , Encéfalo/diagnóstico por imagem , Glioma , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Encéfalo/metabolismo , Neoplasias Encefálicas/química , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/metabolismo , Feminino , Glioma/química , Glioma/diagnóstico por imagem , Glioma/metabolismo , Glutaratos/metabolismo , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Isocitrato Desidrogenase/genética , Masculino , Mutação/genética , Imagens de Fantasmas
8.
Neuroimage ; 184: 475-489, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30243974

RESUMO

An adiabatic MEscher-GArwood (MEGA)-editing scheme, using asymmetric hyperbolic secant editing pulses, was developed and implemented in a B1+-insensitive, 1D-semiLASER (Localization by Adiabatic SElective Refocusing) MR spectroscopic imaging (MRSI) sequence for the non-invasive mapping of γ-aminobutyric acid (GABA) over a whole brain slice. Our approach exploits the advantages of edited-MRSI at 7T while tackling challenges that arise with ultra-high-field-scans. Spatial-spectral encoding, using density-weighted, concentric circle echo planar trajectory readout, enabled substantial MRSI acceleration and an improved point-spread-function, thereby reducing extracranial lipid signals. Subject motion and scanner instabilities were corrected in real-time using volumetric navigators optimized for 7T, in combination with selective reacquisition of corrupted data to ensure robust subtraction-based MEGA-editing. Simulations and phantom measurements of the adiabatic MEGA-editing scheme demonstrated stable editing efficiency even in the presence of ±0.15 ppm editing frequency offsets and B1+ variations of up to ±30% (as typically encountered in vivo at 7T), in contrast to conventional Gaussian editing pulses. Volunteer measurements were performed with and without global inversion recovery (IR) to study regional GABA levels and their underlying, co-edited, macromolecular (MM) signals at 2.99 ppm. High-quality in vivo spectra allowed mapping of pure GABA and MM-contaminated GABA+ (GABA + MM) along with Glx (Glu + Gln), with high-resolution (eff. voxel size: 1.4 cm3) and whole-slice coverage in 24 min scan time. Metabolic ratio maps of GABA/tNAA, GABA+/tNAA, and Glx/tNAA were correlated linearly with the gray matter fraction of each voxel. A 2.15-fold increase in gray matter to white matter contrast was observed for GABA when enabling IR, which we attribute to the higher abundance of macromolecules at 2.99 ppm in the white matter than in the gray matter. In conclusion, adiabatic MEGA-editing with 1D-semiLASER selection is as a promising approach for edited-MRSI at 7T. Our sequence capitalizes on the benefits of ultra-high-field MRSI while successfully mitigating the challenges related to B0/B1+ inhomogeneities, prolonged scan times, and motion/scanner instability artifacts. Robust and accurate 2D mapping has been shown for the neurotransmitters GABA and Glx.


Assuntos
Química Encefálica , Processamento de Imagem Assistida por Computador/métodos , Espectroscopia de Ressonância Magnética/métodos , Ácido gama-Aminobutírico/análise , Adulto , Artefatos , Feminino , Humanos , Masculino
9.
Radiology ; 286(2): 666-675, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28957645

RESUMO

Purpose To compare the involuntary head motion, frequency and B0 shim changes, and effects on data quality during real-time-corrected three-dimensional γ-aminobutyric acid-edited magnetic resonance (MR) spectroscopic imaging in subjects with mild cognitive impairment (MCI), patients with Parkinson disease (PD), and young and older healthy volunteers. Materials and Methods In this prospective study, MR spectroscopic imaging datasets were acquired at 3 T after written informed consent was obtained. Translational and rotational head movement, frequency, and B0 shim were determined with an integrated volumetric navigator. Head motion patterns and imager instability were investigated in 33 young healthy control subjects (mean age ± standard deviation, 31 years ± 5), 34 older healthy control subjects (mean age, 67 years ± 8), 34 subjects with MCI (mean age, 72 years ± 5), and 44 patients with PD (mean age, 64 years ± 8). Spectral quality was assessed by means of region-of-interest analysis. Group differences were evaluated with Bonferroni-corrected Mann-Whitney tests. Results Three patients with PD and four subjects with MCI were excluded because of excessive head motion (ie, > 0.8 mm translation per repetition time of 1.6 seconds throughout >10 minutes). Older control subjects, patients with PD, and subjects with MCI demonstrated 1.5, 2, and 2.5 times stronger head movement, respectively, than did young control subjects (1.79 mm ± 0.77) (P < .001). Of young control subjects, older control subjects, patients with PD, and subjects with MCI, 6%, 35%, 38%, and 51%, respectively, moved more than 3 mm during the MR spectroscopic imaging acquisition of approximately 20 minutes. The predominant movements were head nodding and "sliding out" of the imager. Frequency changes were 1.1- and 1.4-fold higher in patients with PD (P = .007) and subjects with MCI (P < .001), respectively, and B0 shim changes were 1.3-, 1.5-, and 1.9-fold higher in older control subjects (P = .005), patients with PD (P < .001), and patients with MCI (P < .001), respectively, compared with those of young control subjects (12.59 Hz ± 2.49, 3.61 Hz · cm-1 ± 1.25). Real-time correction provided high spectral quality in all four groups (signal-to-noise ratio >15, Cramér-Rao lower bounds < 20%). Conclusion Real-time motion and B0 monitoring provides valuable information about motion patterns and B0 field variations in subjects with different predispositions for head movement. Immediate correction improves data quality, particularly in patients who have difficulty avoiding movement. © RSNA, 2017 Online supplemental material is available for this article.


Assuntos
Artefatos , Disfunção Cognitiva/patologia , Movimentos da Cabeça/fisiologia , Doença de Parkinson/patologia , Idoso , Meios de Contraste , Falha de Equipamento , Feminino , Humanos , Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/normas , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/normas , Espectroscopia de Ressonância Magnética/instrumentação , Espectroscopia de Ressonância Magnética/normas , Masculino , Pessoa de Meia-Idade , Movimento , Estudos Prospectivos , Ácido gama-Aminobutírico
10.
Cancer ; 123(23): 4535-4546, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28980701

RESUMO

The metabolic genes isocitrate dehydrogenase 1 (IDH1) and IDH2 are commonly mutated in low-grade glioma and in a subset of glioblastoma. These mutations co-occur with other recurrent molecular alterations, including 1p/19q codeletions and tumor suppressor protein 53 (TP53) and alpha thalassemia/mental retardation (ATRX) mutations, which together help to define a molecular signature that aids in the classification of gliomas and helps to better predict clinical behavior. A confluence of research suggests that glioma development in IDH-mutant and IDH wild-type tumors is driven by different oncogenic processes and responds differently to current treatment paradigms. Herein, the authors discuss the discovery of IDH mutations and associated molecular alterations in glioma, review clinical features common to patients with IDH-mutant glioma, and highlight current understanding of IDH mutation-driven gliomagenesis with implications for emerging treatment strategies. Cancer 2017;123:4535-4546. © 2017 American Cancer Society.


Assuntos
Glioma/genética , Glioma/terapia , Isocitrato Desidrogenase/genética , Mutação , Glioma/diagnóstico , Humanos
11.
Magn Reson Med ; 77(2): 490-497, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-26840906

RESUMO

PURPOSE: Large lipid and water signals in MR spectroscopic imaging (MRSI) complicate brain metabolite quantification. In this study, we combined adiabatic hypergeometric dual-band (HGDB) lipid and water suppression with gradient offset independent adiabatic (GOIA) spin echo to improve three-dimensional (3D) MRSI of the entire brain. METHODS: 3D MRSI was acquired at 3T with a 32-channel coil. HGDB pulses were used before excitation and during echo time. A brain slab was selected with GOIA-W(16,4) pulses, weighted phase encoded stack of spirals, and real-time motion/shim correction. HGDB alone or in combination with OVS and MEGA (MEscher-GArwood) was compared with OVS only and no suppression. RESULTS: The combined HGDB pulses suppressed lipids to 2%-3% of their full unsuppressed signal. The HGDB lipid suppression was on average 5 times better than OVS suppression. HGDB+MEGA provided 30% more suppression compared with a previously described HGDB+OVS scheme. The number of voxels with good metabolic fits was significantly larger in the HGDB data (91%-94%) compared with the OVS data (59%-80%). CONCLUSION: HGDB pulses provided efficient lipid and water suppression for full brain 3D MRSI. The HGDB suppression is superior to traditional OVS, and it can be combined with adiabatic spin echo to provide a sequence that is robust to B1 inhomogeneity. Magn Reson Med 77:490-497, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Encéfalo/metabolismo , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Metaboloma/fisiologia , Imagem Molecular/métodos , Adulto , Algoritmos , Feminino , Humanos , Aumento da Imagem/métodos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador , Marcadores de Spin
12.
Anal Biochem ; 529: 48-64, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28034791

RESUMO

This article reviews the methodological aspects of detecting low-abundant J-coupled metabolites via 1D spectral editing techniques and 2D nuclear magnetic resonance (NMR) methods applied in vivo, in humans, with a focus on the brain. A brief explanation of the basics of J-evolution will be followed by an introduction to 1D spectral editing techniques (e.g., J-difference editing, multiple quantum coherence filtering) and 2D-NMR methods (e.g., correlation spectroscopy, J-resolved spectroscopy). Established and recently developed methods will be discussed and the most commonly edited J-coupled metabolites (e.g., neurotransmitters, antioxidants, onco-markers, and markers for metabolic processes) will be briefly summarized along with their most important applications in neuroscience and clinical diagnosis.


Assuntos
Biomarcadores/metabolismo , Encéfalo/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Animais , Humanos
13.
Magn Reson Med ; 76(2): 380-90, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26308482

RESUMO

PURPOSE: To optimize the Rosette trajectories for high-sensitivity in vivo brain spectroscopic imaging and reduced gradient demands. METHODS: Using LASER localization, a rosette based sampling scheme for in vivo brain spectroscopic imaging data on a 3 Tesla (T) system is described. The two-dimensional (2D) and 3D rosette spectroscopic imaging (RSI) data were acquired using 20 × 20 in-plane resolution (8 × 8 mm(2) ), and 1 (2D) -18 mm (1.1 cc) or 12 (3D) -8 mm partitions (0.5 cc voxels). The performance of the RSI acquisition was compared with a conventional spectroscopic imaging (SI) sequence using LASER localization and 2D or 3D elliptical phase encoding (ePE). Quantification of the entire RSI data set was performed using an LCModel based pipeline. RESULTS: The RSI acquisitions took 32 s for the 2D scan, and as short as 5 min for the 3D 20 × 20 × 12 scan, using a maximum gradient strength Gmax=5.8 mT/m and slew-rate Smax=45 mT/m/ms. The Bland-Altman agreement between RSI and ePE CSI, characterized by the 95% confidence interval for their difference (RSI-ePE), is within 13% of the mean (RSI+ePE)/2. Compared with the 3D ePE at the same nominal resolution, the effective RSI voxel size was three times smaller while the measured signal-to-noise ratio sensitivity, after normalization for differences in effective size, was 43% greater. CONCLUSION: 3D LASER-RSI is a fast, high-sensitivity spectroscopic imaging sequence, which can acquire medium-to-high resolution SI data in clinically acceptable scan times (5-10 min), with reduced stress on the gradient system. Magn Reson Med 76:380-390, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Química Encefálica , Encéfalo/anatomia & histologia , Interpretação de Imagem Assistida por Computador/métodos , Lasers , Espectrometria de Massas/métodos , Imagem Molecular/métodos , Reconhecimento Automatizado de Padrão/métodos , Adulto , Algoritmos , Feminino , Humanos , Imageamento Tridimensional/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
14.
NMR Biomed ; 29(12): 1825-1834, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27862510

RESUMO

Phosphorus MRSI (31 P-MRSI) using a spiral-trajectory readout at 7 T was developed for high temporal resolution mapping of the mitochondrial capacity of exercising human skeletal muscle. The sensitivity and localization accuracy of the method was investigated in phantoms. In vivo performance was assessed in 12 volunteers, who performed a plantar flexion exercise inside a whole-body 7 T MR scanner using an MR-compatible ergometer and a surface coil. In five volunteers the knee was flexed (~60°) to shift the major workload from the gastrocnemii to the soleus muscle. Spiral-encoded MRSI provided 16-25 times faster mapping with a better point spread function than elliptical phase-encoded MRSI with the same matrix size. The inevitable trade-off for the increased temporal resolution was a reduced signal-to-noise ratio, but this was acceptable. The phosphocreatine (PCr) depletion caused by exercise at 0° knee angulation was significantly higher in both gastrocnemii than in the soleus (i.e. 64.8 ± 19.6% and 65.9 ± 23.6% in gastrocnemius lateralis and medialis versus 15.3 ± 8.4% in the soleus). Spiral-encoded 31 P-MRSI is a powerful tool for dynamic mapping of exercising muscle oxidative metabolism, including localized assessment of PCr concentrations, pH and maximal oxidative flux with high temporal and spatial resolution.


Assuntos
Metabolismo Energético/fisiologia , Exercício Físico/fisiologia , Espectroscopia de Ressonância Magnética/métodos , Mitocôndrias Musculares/fisiologia , Imagem Molecular/métodos , Músculo Esquelético/fisiologia , Fosfocreatina/metabolismo , Adulto , Tolerância ao Exercício/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Mitocôndrias Musculares/ultraestrutura , Músculo Esquelético/diagnóstico por imagem , Isótopos de Fósforo/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Amplitude de Movimento Articular , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
15.
NMR Biomed ; 29(11): 1656-1665, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27717093

RESUMO

The reproducibility of gamma-aminobutyric acid (GABA) quantification results, obtained with MRSI, was determined on a 3 T MR scanner in healthy adults. In this study, a spiral-encoded, GABA-edited, MEGA-LASER MRSI sequence with real-time motion-scanner-instability corrections was applied for robust 3D mapping of neurotransmitters in the brain. In particular, the GABA+ (i.e. GABA plus macromolecule contamination) and Glx (i.e. glutamate plus glutamine contamination) signal was measured. This sequence enables 3D-MRSI with about 3 cm3 nominal resolution in about 20 min. Since reliable quantification of GABA is challenging, the spatial distribution of the inter-subject and intra-subject variability of GABA+ and Glx levels was studied via test-retest assessment in 14 healthy volunteers (seven men-seven women). For both inter-subject and intra-subject repeated measurement sessions a low coefficient of variation (CV) and a high intraclass correlation coefficient (ICC) were found for GABA+ and Glx ratios across all evaluated voxels (intra-/inter-subject: GABA+ ratios, CV ~ 8%-ICC > 0.75; Glx ratios, CV ~ 6%-ICC > 0.70). The same was found in selected brain regions for Glx ratios versus GABA+ ratios (CV varied from about 5% versus about 8% in occipital and parietal regions, to about 8% versus about 10% in the frontal area, thalamus, and basal ganglia). These results provide evidence that 3D mapping of GABA+ and Glx using the described methodology provides high reproducibility for application in clinical and neuroscientific studies.


Assuntos
Algoritmos , Artefatos , Encéfalo/metabolismo , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Imagem Molecular/métodos , Ácido gama-Aminobutírico/metabolismo , Adulto , Encéfalo/anatomia & histologia , Sistemas Computacionais , Feminino , Humanos , Masculino , Neurotransmissores/metabolismo , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador , Análise Espaço-Temporal
16.
Neuroimage ; 89: 92-109, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24345390

RESUMO

Nuclear magnetic resonance (NMR) relaxation in the rotating frame is sensitive to molecular dynamics on the time scale of water molecules interacting with macromolecules or supramolecular complexes, such as proteins, myelin and cell membranes. Hence, longitudinal (T1ρ) and transverse (T2ρ) relaxation in the rotating frame may have a great potential to probe the macromolecular fraction of tissues. This stimulated a large interest in using this MR contrast to image brain under healthy and disease conditions. However, experimental challenges related to the use of intense radiofrequency irradiation have limited the widespread use of T1ρ and T2ρ imaging. Here, we present methodological development to acquire 3D high-resolution or 2D (multi-)slice selective T1ρ and T2ρ maps of the entire human brain within short acquisition times. These improvements are based on a class of gradient modulated adiabatic pulses that reduce the power deposition, provide slice selection, and mitigate artifacts resulting from inhomogeneities of B1 and B0 magnetic fields. Based on an analytical model of the T1ρ and T2ρ relaxation we compute the maps of macromolecular bound water fraction, correlation and exchange time constants as quantitative biomarkers informative of tissue macromolecular content. Results obtained from simulations, phantoms and five healthy subjects are included.


Assuntos
Química Encefálica , Mapeamento Encefálico/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Água/química , Adulto , Humanos , Masculino , Simulação de Dinâmica Molecular
17.
Neuroimage ; 88: 22-31, 2014 03.
Artigo em Inglês | MEDLINE | ID: mdl-24201013

RESUMO

The full potential of magnetic resonance spectroscopic imaging (MRSI) is often limited by localization artifacts, motion-related artifacts, scanner instabilities, and long measurement times. Localized adiabatic selective refocusing (LASER) provides accurate B1-insensitive spatial excitation even at high magnetic fields. Spiral encoding accelerates MRSI acquisition, and thus, enables 3D-coverage without compromising spatial resolution. Real-time position- and shim/frequency-tracking using MR navigators correct motion- and scanner instability-related artifacts. Each of these three advanced MRI techniques provides superior MRSI data compared to commonly used methods. In this work, we integrated in a single pulse sequence these three promising approaches. Real-time correction of motion, shim, and frequency-drifts using volumetric dual-contrast echo planar imaging-based navigators were implemented in an MRSI sequence that uses low-power gradient modulated short-echo time LASER localization and time efficient spiral readouts, in order to provide fast and robust 3D-MRSI in the human brain at 3T. The proposed sequence was demonstrated to be insensitive to motion- and scanner drift-related degradations of MRSI data in both phantoms and volunteers. Motion and scanner drift artifacts were eliminated and excellent spectral quality was recovered in the presence of strong movement. Our results confirm the expected benefits of combining a spiral 3D-LASER-MRSI sequence with real-time correction. The new sequence provides accurate, fast, and robust 3D metabolic imaging of the human brain at 3T. This will further facilitate the use of 3D-MRSI for neuroscience and clinical applications.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Imageamento Tridimensional/métodos , Espectroscopia de Ressonância Magnética/métodos , Adulto , Feminino , Humanos , Imageamento Tridimensional/normas , Espectroscopia de Ressonância Magnética/normas , Masculino , Imagens de Fantasmas
18.
Neuroimage ; 103: 290-302, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25255945

RESUMO

Gamma-aminobutyric acid (GABA) and glutamate (Glu) are the major neurotransmitters in the brain. They are crucial for the functioning of healthy brain and their alteration is a major mechanism in the pathophysiology of many neuro-psychiatric disorders. Magnetic resonance spectroscopy (MRS) is the only way to measure GABA and Glu non-invasively in vivo. GABA detection is particularly challenging and requires special MRS techniques. The most popular is MEscher-GArwood (MEGA) difference editing with single-voxel Point RESolved Spectroscopy (PRESS) localization. This technique has three major limitations: a) MEGA editing is a subtraction technique, hence is very sensitive to scanner instabilities and motion artifacts. b) PRESS is prone to localization errors at high fields (≥3T) that compromise accurate quantification. c) Single-voxel spectroscopy can (similar to a biopsy) only probe steady GABA and Glu levels in a single location at a time. To mitigate these problems, we implemented a 3D MEGA-editing MRS imaging sequence with the following three features: a) Real-time motion correction, dynamic shim updates, and selective reacquisition to eliminate subtraction artifacts due to scanner instabilities and subject motion. b) Localization by Adiabatic SElective Refocusing (LASER) to improve the localization accuracy and signal-to-noise ratio. c) K-space encoding via a weighted stack of spirals provides 3D metabolic mapping with flexible scan times. Simulations, phantom and in vivo experiments prove that our MEGA-LASER sequence enables 3D mapping of GABA+ and Glx (Glutamate+Gluatmine), by providing 1.66 times larger signal for the 3.02ppm multiplet of GABA+ compared to MEGA-PRESS, leading to clinically feasible scan times for 3D brain imaging. Hence, our sequence allows accurate and robust 3D-mapping of brain GABA+ and Glx levels to be performed at clinical 3T MR scanners for use in neuroscience and clinical applications.


Assuntos
Encéfalo/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Processamento de Sinais Assistido por Computador , Ácido gama-Aminobutírico/análise , Adulto , Artefatos , Química Encefálica/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino
19.
Magn Reson Med ; 72(3): 770-8, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24285593

RESUMO

PURPOSE: To improve slice coverage of gradient echo spin echo (GESE) sequences for dynamic susceptibility contrast (DSC) MRI using a simultaneous-multiple-slice (SMS) method. METHODS: Data were acquired on 3 Tesla (T) MR scanners with a 32-channel head coil. To evaluate use of SMS for DSC, an SMS GESE sequence with two-fold slice coverage and same temporal sampling was compared with a standard GESE sequence, both with 2× in-plane acceleration. A signal to noise ratio (SNR) comparison was performed on one healthy subject. Additionally, data with Gadolinium injection were collected on three patients with glioblastoma using both sequences, and perfusion analysis was performed on healthy tissues as well as on tumor. RESULTS: Retained SNR of SMS DSC is 90% for a gradient echo (GE) and 99% for a spin echo (SE) acquisition, compared with a standard acquisition without slice acceleration. Comparing cerebral blood volume maps, it was observed that the results of standard and SMS acquisitions are comparable for both GE and SE images. CONCLUSION: Two-fold slice accelerated DSC MRI achieves similar SNR and perfusion metrics as a standard acquisition, while allowing a significant increase in slice coverage of the brain. The results also point to a possibility to improve temporal sampling rate, while retaining the same slice coverage.


Assuntos
Neoplasias Encefálicas/patologia , Imagem Ecoplanar/métodos , Glioblastoma/patologia , Artefatos , Circulação Cerebrovascular , Meios de Contraste , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Sensibilidade e Especificidade , Razão Sinal-Ruído
20.
medRxiv ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38645249

RESUMO

Purpose: 1.1 Proton ( 1 H)-MRSI via spatial-spectral encoding poses high demands on gradient hardware at ultra-high fields and high-resolutions. Rosette trajectories help alleviate these problems, but at reduced SNR-efficiency due to their k-space densities not matching any desired k-space filter. We propose modified rosette trajectories, which more closely match a Hamming filter, and thereby improve SNR performance while still staying within gradient hardware limitations and without prolonging scan time. Methods: 1.2Analytical and synthetic simulations were validated with phantom and in vivo measurements at 7 T. The rosette and modified rosette trajectories were measured in five healthy volunteers in six minutes in a 2D slice in the brain. A 3D sequence was measured in one volunteer within 19 minutes. The SNR, linewidth, CRLBs, lipid contamination and data quality of the proposed modified rosette trajectory were compared to the rosette trajectory. Results: 1.3Using the modified rosette trajectories, an improved k-space weighting function was achieved resulting in an increase of up to 12% in SNR compared to rosette's dependent on the two additional trajectory parameters. Similar results were achieved for the theoretical SNR calculation based on k-space densities, as well as when using the pseudo-replica method for simulated, in-vivo and phantom data. The CRLBs improved slightly, but non-significantly for the modified rosette trajectories, while the linewidths and lipid contamination remained similar. Conclusion: 1.4By improving the rosette trajectory's shape, modified rosette trajectories achieved higher SNR at the same scan time and data quality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA