Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
AAPS PharmSciTech ; 25(7): 211, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39242397

RESUMO

Pirarubicin attracted considerable attention in clinical studies because of its high therapeutic efficacy and reduced toxicity in comparison with other anthracyclines. Nevertheless, ~ 30% patients undergoing PIRA treatment still experience relapse and metastasis. Clinical advancements unveiled that cancer stem cells (CSCs) residing in the tumor constitutes a major factor for such limitations and subsequently are the reason for treatment failure. Consequently, eradicating CSCs alongside bulk tumor is a crucial undertaking to attain utmost therapeutic efficacy of the treatment. Nevertheless, majority of the CSCs inhibitors currently under examination lack specificity, show unsynchronized bioavailability with other primary treatments and exhibit notable toxicity in their therapeutic applications, which is primarily attributable to their inadequate tumor-targeting capabilities. Therefore, we have developed a biodegradable polylactic acid based blend block copolymeric NPs for concomitant delivery of CSCs inhibitor Salinomycin (SAL) & chemotherapeutic drug Pirarubicin (PIRA) with an aim to improve the efficacy of treatment and prevent cancer relapse. Prepared NPs showed < 100 nm size and excellent loading with sustained release for both the drugs. Also, PIRA:SAL co-loaded NPs exhibits synergistically enhanced cytotoxicity against cancer cell as well as CSCs. Most importantly, NPs mediated co-delivery of the drugs showed complete tumor eradication, without any reoccurrence throughout the surveillance period. Additionally, NPs treatment didn't show any histopathological alteration in vital organs confirming their non-toxic nature. Altogether, present study concludes that the developed PIRA:SAL NPs have excellent efficacy for tumor regression as well as prevention of cancer relapse, hence can be used as a potential combination therapy for cancer treatment.


Assuntos
Doxorrubicina , Piranos , Piranos/administração & dosagem , Piranos/farmacologia , Doxorrubicina/administração & dosagem , Doxorrubicina/análogos & derivados , Doxorrubicina/farmacologia , Humanos , Animais , Linhagem Celular Tumoral , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Nanopartículas/química , Sinergismo Farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Camundongos , Poliésteres/química , Sistemas de Liberação de Medicamentos/métodos , Portadores de Fármacos/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Recidiva Local de Neoplasia/tratamento farmacológico , Feminino , Liberação Controlada de Fármacos , Policetídeos de Poliéter
2.
Nanomedicine ; 47: 102627, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36410699

RESUMO

Combination chemotherapy with systemic administration of drugs in their free form can be challenging due to non-synchronized pharmacokinetics and sub-optimal tumor accumulation. The present study investigates a PLA-based block copolymeric nanocarrier for the co-delivery of navitoclax and decitabine (NAV/DCB NPs) for combination cancer therapy. NAV/DCB NPs exhibited potent in vitro synergistic cytotoxicity in both acute myeloid leukemia and breast cancer cell lines. Biodistribution studies of NAV/DCB NPs in tumor bearing mice, showed significant drug accumulation in tumor tissue and detectable quantities in plasma even after 48 h. Good hemocompatibility with reduced in vivo platelet toxicity indicated that encapsulation in PLA-based nanocarrier helped ameliorate navitoclax associated thrombocytopenia. In vivo biological activity of NAV/DCB NPs evaluated in xenograft AML and syngeneic breast cancer model, demonstrated potent tumor growth inhibition efficacy. PLA-based NAV/DCB dual NPs present a novel, safe and effective nanoformulation for combination cancer therapy in both solid tumors and hematologic malignancies.


Assuntos
Sistemas de Liberação de Fármacos por Nanopartículas , Neoplasias , Animais , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Distribuição Tecidual , Quimioterapia Combinada/métodos , Decitabina/uso terapêutico
3.
J Mater Chem B ; 12(24): 5907-5916, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38804192

RESUMO

Voice prostheses are known to fail in few weeks to several months of implantation due to the clogging mainly caused by microbial biofilm formation, which is a cause of concern. Iodine is a known broad-spectrum biocide and is reported to easily form complexes with various polymers. For long term device disinfection, strong iodine complexation that offers sustained iodine release for a prolonged period is essential. The present research work deals with the synthesis of a poly(methyl methacrylate-n-butyl acrylate-N-vinyl-2-pyrrolidone) (poly[MMA-BA-NVP]) tercopolymer through free radical polymerization for surface coating thermoplastic polyurethane (TPU) based voice prostheses. The NVP content in the tercopolymer was varied from 20% to 50% to optimise iodine loading and subsequent release. Base TPU coated with the tercopolymer was treated with 4% aqueous iodine solution at room temperature (28 ± 3 °C) for two hours. It was observed that the tercopolymer containing 35% N-vinyl-2-pyrrolidone (NVP), 32.5% methyl methacrylate (MMA) and 32.5% butyl acrylate (nBA) gave a stable coating on TPUs together with sustained iodine release for a prolonged period. Furthermore, the tercopolymer coated and iodine loaded TPUs exhibited excellent antimicrobial activity against Candida albicans, Staphylococcus aureus and Escherichia coli.


Assuntos
Iodo , Poliuretanos , Poliuretanos/química , Iodo/química , Iodo/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Escherichia coli/efeitos dos fármacos , Preparações de Ação Retardada/química , Laringe Artificial , Pirrolidinonas/química , Pirrolidinonas/farmacologia , Propriedades de Superfície
4.
Int J Pharm ; 664: 124622, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39197799

RESUMO

Colorectal cancer (CRC) is one of the most common and challenging malignancy that needs some effective and safer chemotherapeutic agents for the treatment. In this study, anticancer agent epirubicin (Epi) was loaded in polymeric polyethylene glycol-polylactic acid-nanoparticles (mPEG-PLA-NPs) coated with a marine anti-cancer non-toxic polysaccharide fucoidan (FC), to achieve a synergistic activity against CRC. The characterization of the NPs revealed that they were spherical, monodispersed, stable, with a negative zeta potential, and exhibited good biocompatibility and controlled release. In vitro anti-cancer activity of the NPs on HCT116 cell line was found to be promising, and corroborated well with in vivo studies involving BALB/C mice injected with C26 murine cancer cells. The outcome of MTT assay demonstrated that IC50 value of free Epi was 3.72 µM, and that of non-coated and coated Epi nano-formulations was 33.67 and 10.19 µM, respectively. Higher tumor regression, better survival and reduced off-side cardiotoxicity were observed when this novel NPs formulation was used to treat tumor-bearing mice. Free FC and Epi treated mice showed 37.73 % and 61.49 % regression in tumor size, whereas there was 79.76 % and 90.34 % tumor regression in mice treated with non-coated Epi NPs and coated Epi NPs, respectively. Therefore, mPEG-PLA-FC-Epi-NPs hold a potential to be used as an effective chemotherapeutic formulation against CRC, since it exhibited better efficacy and lower toxicity.


Assuntos
Neoplasias Colorretais , Epirubicina , Camundongos Endogâmicos BALB C , Nanopartículas , Poliésteres , Polietilenoglicóis , Polissacarídeos , Animais , Epirubicina/administração & dosagem , Epirubicina/química , Epirubicina/farmacologia , Polissacarídeos/química , Polissacarídeos/administração & dosagem , Polissacarídeos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Humanos , Nanopartículas/química , Polietilenoglicóis/química , Polietilenoglicóis/administração & dosagem , Células HCT116 , Poliésteres/química , Camundongos , Liberação Controlada de Fármacos , Portadores de Fármacos/química , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Masculino
5.
Int J Pharm ; 635: 122779, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36842520

RESUMO

Existence of cancer stem cells (CSCs) are primarily responsible for chemoresistance, cancer reoccurrence and treatment failure in cancer patients. Eliminating CSCs along with bulk tumor is a necessity to achieve complete cancer inhibition. Salinomycin (SAL) has potential to specifically target and kill CSCs through blocking their multiple pathways simultaneously. SAL has also been reported to improve anti-cancer efficacy of numerous chemo-based drugs when used in combination therapy. However, clinical use of SAL is restricted due to its high off targeted toxicity. Herein, we have developed a PLA based hybrid block copolymer for concomitant delivery of SAL and doxorubicin (DOX) with an aim to reduce their adverse side effects and enhance the therapeutic efficacy of the treatment. Designed PLA based nanoplatform showed high encapsulation and sustained release profile for both the drugs. Cytotoxicity evaluation on cancer cell lines confirmed the synergistic effect of SAL:DOX co-loaded NPs. Additionally, prepared SAL NPs were also found to be highly effective against chemo-resistant cancer cells and CSCs derived from cancer patient. Most importantly, encapsulation of SAL in PLA NPs improved its pharmacokinetics and biodistribution profile. Consequently, undesired toxicity with SAL NPs was significantly reduced which in-turn increased the dose tolerability in mice as compared to free SAL. Treatment of EAC tumor bearing mice with SAL:DOX co-loaded NPs resulted in excellent tumor regression and complete inhibition of cancer reoccurrence. These results conclude that concomitant delivery of SAL and DOX using PLA based block copolymeric nano-carrier have a strong potential for cancer therapy.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Camundongos , Animais , Distribuição Tecidual , Doxorrubicina/farmacologia , Poliésteres , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico
6.
Bioeng Transl Med ; 8(5): e10541, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37693068

RESUMO

Multiple studies have shown that the progression of breast cancer depends on multiple signaling pathways, suggesting that therapies with multitargeted anticancer agents will offer improved therapeutic benefits through synergistic effects in inhibiting cancer growth. Dual-targeted inhibitors of phosphoinositide 3-kinase (PI3-K) and histone deacetylase (HDAC) have emerged as promising cancer therapy candidates. However, poor aqueous solubility and bioavailability limited their efficacy in cancer. The present study investigates the encapsulation of a PI3-Kδ/HDAC6 dual inhibitor into hybrid block copolymers (polylactic acid-methoxy polyethylene glycol; polylactic acid-polyethylene glycol-polypropylene glycol-polyethylene glycol-polylactic acid) (HSB-510) as a delivery system to target PI3-Kδ and HDAC6 pathways in breast cancer cells. The prepared HSB-510 showed an average diameter of 96 ± 3 nm, a zeta potential of -17 ± 2 mV, and PDI of ˂0.1 with a slow and sustained release profile of PI3-Kδ/HDAC6 inhibitors in a nonphysiological buffer. In vitro studies with HSB-510 have demonstrated substantial growth inhibition of breast cancer cell lines, MDA-MB-468, SUM-149, MCF-7, and Ehrlich ascites carcinoma (EAC) as well as downregulation of phospho-AKT, phospho-ERK, and c-Myc levels. Importantly, bi-weekly treatment of Balb/c wild-type mice harboring EAC cells with HSB-510 at a dose of 25 mg/kg resulted in significant tumor growth inhibition. The treatment with HSB-510 was without any significant effect on the body weights of the mice. These results demonstrate that a novel Quatramer encapsulation of a PI3-Kδ/HDAC6 dual inhibitor (HSB-510) represents an approach for the successful targeting of breast cancer and potentially other cancer types.

7.
Int J Pharm ; 620: 121761, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35472512

RESUMO

Pirarubicin (PIRA) is a semi-synthetic anthracycline derivative that is reported to have lesser toxicity and better clinical outcomes as compared to its parental form doxorubicin (DOX). However, long term use of PIRA causes bone marrow suppression and severe cardiotoxicity to the recipients. Herein, we have developed a biodegradable polymeric nano platform consisting of amphiphilic di-block copolymer methoxy polyethylene glycol-polylactic acid and a hydrophobic penta-block copolymer polylactic acid-pluronic L-61-polylactic acid as a hybrid system to prepare PIRA (& DOX) encapsulated nanoparticles (NPs) with an aim to reduce its off targeted toxicity and enhance therapeutic efficacy for cancer therapy. Prepared PIRA/DOX NPs showed uniform particle size distribution, high encapsulation efficiency and sustained drug release profile. Cytotoxicity evaluation of PIRA NPs against TNBC cells and mammospheres showed its superior anti-cancer activity over DOX NPs. Anti-cancer efficacy of PIRA/DOX NPs was found significantly enhanced in presence of penta-block copolymer which confirmed chemo-sensitising ability of pluronic L-61. Most importantly, encapsulation of PIRA/DOX in the NPs reduced their off targeted toxicity and increased the maximum tolerated dose in BALB/c mice. Moreover, treatment of EAC tumor harbouring mice with PIRA NPs resulted in higher tumor regression as compared with the groups treated with free PIRA, free DOX or DOX NPs. Altogether, the results conclude that prepared PIRA NPs exhibits an excellent anti-cancer therapeutic efficacy and has a strong potential for cancer therapy.


Assuntos
Nanopartículas , Neoplasias , Animais , Linhagem Celular Tumoral , Doxorrubicina/análogos & derivados , Sistemas de Liberação de Medicamentos/métodos , Camundongos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Poloxâmero/uso terapêutico , Poliésteres/química , Polímeros/uso terapêutico
8.
Int J Pharm ; 628: 122343, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36341921

RESUMO

Progression and metastasis of ER+ breast cancer depend on multiple signaling cascades. The available conventional treatment options have limited efficacy in ER+ breast cancer due to overexpression of AKT, c-Myc and BCL-2 proteins. Simultaneous targeting and inhibition of these targets in ER+ cancer may result in effective therapeutic outcomes. However, combining two or more free drug molecules to treat cancer leads to unsynchronised pharmacokinetics, toxicity, and eventual resistance development. To overcome these limitations, a novel nanoformulation of PI3-Kδ/HDAC6 dual inhibitor in combination with Navitoclax is developed using Pluronic modified PLA based hybrid block copolymer. The prepared dual drug loaded PI3-Kδ/HDAC6-NAV-NPs (1:3-NPs) have shown high encapsulation efficiency, hydrodynamic size, and polydispersity of âˆ¼ 93 %, 159 ± 2.6 nm, and 0.19 ± 0.03, respectively. These PI3-Kδ/HDAC6-NAV-NPs exhibit slow and sustained release profiles of PI3-Kδ/HDAC6 inhibitor and NAV in phosphate buffer saline (PBS, pH 7.4). The in-vitro cytotoxicity studies done with PI3-Kδ/HDAC6-NAV-NPs in ER+ breast cancer cell lines have shown a synergistic effect with lower IC50 values compared to individual NAV-NPs and PI3-Kδ/HDAC6-NPs. The PI3-Kδ/HDAC6-NAV-NPs treatment (4 mg/kg, I.V., twice a week for three weeks) of ER+ breast cancer syngeneic mice tumor model resulted in complete tumor eradication without any overt toxicity. These results demonstrate that a unique formulation of a novel PI3-Kδ/HDAC6 dual inhibitor in combination with Navitoclax represents an approach for an efficient treatment option for ER+ breast cancer.


Assuntos
Nanopartículas , Neoplasias , Camundongos , Animais , Linhagem Celular Tumoral , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA