Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biol ; 21(1): 35, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797754

RESUMO

BACKGROUND: Climate change is one of the main factors shaping the distribution and biodiversity of organisms, among others by greatly altering water availability, thus exposing species and ecosystems to harsh desiccation conditions. However, most of the studies so far have focused on the effects of increased temperature. Integrating transcriptomics and physiology is key to advancing our knowledge on how species cope with desiccation stress, and these studies are still best accomplished in model organisms. RESULTS: Here, we characterized the natural variation of European D. melanogaster populations across climate zones and found that strains from arid regions were similar or more tolerant to desiccation compared with strains from temperate regions. Tolerant and sensitive strains differed not only in their transcriptomic response to stress but also in their basal expression levels. We further showed that gene expression changes in tolerant strains correlated with their physiological response to desiccation stress and with their cuticular hydrocarbon composition, and functionally validated three of the candidate genes identified. Transposable elements, which are known to influence stress response across organisms, were not found to be enriched nearby differentially expressed genes. Finally, we identified several tRNA-derived small RNA fragments that differentially targeted genes in response to desiccation stress. CONCLUSIONS: Overall, our results showed that basal gene expression differences across individuals should be analyzed if we are to understand the genetic basis of differential stress survival. Moreover, tRNA-derived small RNA fragments appear to be relevant across stress responses and allow for the identification of stress-response genes not detected at the transcriptional level.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Drosophila/genética , Drosophila melanogaster/fisiologia , Água/metabolismo , Dessecação , Ecossistema , Expressão Gênica , Estresse Fisiológico
2.
Environ Microbiol ; 24(10): 4771-4786, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35876309

RESUMO

Phytoplasmas are obligatory intracellular bacteria that colonize the phloem of many plant species and cause hundreds of plant diseases worldwide. In nature, phytoplasmas are primarily transmitted by hemipteran vectors. While all phloem-feeding insects could in principle transmit phytoplasmas, only a limited number of species have been confirmed as vectors. Knowledge about factors that might determine the vector capacity is currently scarce. Here, we characterized the microbiomes of vector and non-vector species of apple proliferation (AP) phytoplasma 'Candidatus Phytoplasma mali' to investigate their potential role in the vector capacity of the host. We performed high-throughput 16S rRNA metabarcoding of the two principal AP-vectors Cacopsylla picta and Cacopsylla melanoneura and eight Cacopsylla species, which are not AP-vectors but co-occur in apple orchards. The microbiomes of all species are dominated by Carsonella, the primary endosymbiont of psyllids and a second uncharacterized Enterobacteriaceae endosymbiont. Each Cacopsylla species harboured a species-specific phylotype of both symbionts. Moreover, we investigated differences between the microbiomes of AP-vector versus non-vector species and identified the predominant endosymbionts but also Wolbachia and several minor taxa as potential indicator species. Our study highlights the importance of considering the microbiome in future investigations of potential factors influencing host vector competence. We investigated the potential role of symbiotic bacteria in the acquisition and transmission of phytoplasma. By comparing the two main psyillid vector species of Apple proliferation (AP) phytoplasma and eight co-occurring species, which are not able to vector AP-phytoplasma, we found differences in the microbial communities of AP-vector and non-vector species, which appear to be driven by the predominant symbionts in both vector species and Wolbachia and several minor taxa in the non-vector species. In contrast, infection with AP-phytoplasma did not affect microbiome composition in both vector species. Our study provides new insights into the endosymbiont diversity of Cacopsylla spp. and highlights the importance of considering the microbiome when investigating potential factors influencing host vector competence.


Assuntos
Hemípteros , Malus , Microbiota , Phytoplasma , Animais , Hemípteros/microbiologia , Malus/microbiologia , Microbiota/genética , Phytoplasma/genética , Doenças das Plantas/microbiologia , RNA Ribossômico 16S/genética
3.
J Chem Ecol ; 47(3): 265-279, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33656626

RESUMO

The Mediterranean fruit fly (medfly), Ceratitis capitata, is a worldwide pest of agriculture able to use olfactory cues to locate habitat, food sources, mates and oviposition sites. The sensitivity of medfly olfaction has been exploited to develop olfactory-based attractants that are currently important tools for detection, control and eradication of its populations. Among these is Cera Trap® (BIOIBERICA, S.A.U.), a cost-effective bait. Here we used coupled gas chromatography/electroantennographic detection (GC-EAD) and GC/mass spectrometry (GC-MS) approaches to characterize the medfly antennally-active compounds released by this lure. We identified GC peaks corresponding to chemicals belonging to six different classes including heterocyclic aromatic compounds, aliphatic alcohols, aldehydes, esters, sesquiterpene hydrocarbons, and aromatic alcohols. We tested ten potential candidate volatiles belonging to these classes and predicted to be emitted by the lure and found that they were eliciting electroantennographic responses in medfly adults. These results will help in unravelling the physiological mechanisms of odor perception in both sexes, especially in relation to Cera Trap® attractant activity, which in the field has been shown to be female-specific. These findings and their developments will ultimately expand the toolbox for medfly control in the field.


Assuntos
Ceratitis capitata/química , Ceratitis capitata/metabolismo , Odorantes/análise , Compostos Orgânicos Voláteis/análise , Álcoois/análise , Aldeídos/análise , Animais , Fenômenos Eletrofisiológicos , Ésteres/análise , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Compostos Heterocíclicos/análise , Hidrocarbonetos Aromáticos/análise , Masculino , Sesquiterpenos/análise , Olfato
4.
J Chem Ecol ; 45(1): 1-8, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30547362

RESUMO

Two heliozelid species, Antispila oinophylla van Nieukerken & Wagner and Holocacista rivillei (Stainton) severely infest Italian grapevines. The volatile pheromones from calling females were collected by solid phase micro extraction (SPME) and analyzed by gas chromatography with electroantennographic detection (GC-EAD). Two compounds from A. oinophylla females eliciting electrophysiological activity from the conspecific male antenna were identified as (Z)-5-tetradecenal and (Z)-7-tetradecenal by coupled gas chromatography/mass spectrometry (GC/MS) analysis. SPME collections from H. rivillei produced no GC-EAD active compounds but analysis of fatty acyl moieties in the pheromone gland, demonstrated the presence of the putative pheromone biosynthetic precursors (Z)-5-dodecenoic acid and (Z)-7-tetradecenoic acid. Field trapping experiments in Italy confirmed that (Z)-5-tetradecenal and (Z)-7-tetradecenal are essential for the attraction of male A. oinophylla in a blend ratio of 15:100 respectively, whereas (Z)-5-dodecenal and (Z)-7-tetradecenal attract male H. rivillei in a blend ratio of 100:6.


Assuntos
Lepidópteros/metabolismo , Atrativos Sexuais/metabolismo , Vitis/parasitologia , Aldeídos/análise , Aldeídos/metabolismo , Animais , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Lepidópteros/química , Masculino , Atrativos Sexuais/análise
5.
Plant Biotechnol J ; 16(1): 264-271, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28574666

RESUMO

Herbivorous insects use olfactory cues to locate their host plant within a complex olfactory landscape. One such example is the European grapevine moth Lobesia botrana, a key pest of the grape in the Palearctic region, which recently expanded both its geographical and host plant range. Previous studies have showed that a synthetic blend of the three terpenoids, (E)-ß-caryophyllene, (E)-ß-farnesene and (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), was as attractive for the moth as the complete grape odour profile in laboratory conditions. The same studies also showed that the specific ratio of these compounds in the grape bouquet was crucial because a percentage variation in any of the three volatiles resulted in almost complete inhibition of the blend's attractiveness. Here, we report on the creation of stable grapevine transgenic lines, with modified (E)-ß-caryophyllene and (E)-ß-farnesene emission and thus with an altered ratio compared to the original plants. When headspace collections from these plants were tested in wind tunnel behavioural assays, they were less attractive than control extracts. This result was confirmed by testing synthetic blends imitating the ratio found on natural and transformed plants, as well as by testing the plants themselves. With this evidence, we suggest that a strategy based on volatile ratio modification may also interfere with the host-finding behaviour of L. botrana in the field, creating avenues for new pest control methods.


Assuntos
Mariposas/patogenicidade , Vitis/metabolismo , Vitis/parasitologia , Animais , Odorantes , Sesquiterpenos Policíclicos , Sesquiterpenos/metabolismo
6.
BMC Genet ; 18(1): 87, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-29096606

RESUMO

BACKGROUND: Drosophila suzukii is a highly destructive pest species, causing substantial economic losses in soft fruit production. To better understand migration patterns, gene flow and adaptation in invaded regions, we studied the genetic structure of D. suzukii collected across Italy, where it was first observed in 2008. In particular, we analysed 15 previously characterised Simple Sequence Repeat (SSR) markers to estimate genetic differentiation across the genome of 278 flies collected from nine populations. RESULTS: The nine populations showed high allelic diversity, mainly due to very high heterozygosity. The high Polymorphism Information Content (PIC) index values (ranging from 0.68 to 0.84) indicated good discrimination power for the markers. Negative fixation index (F IS) values in seven of the populations indicated a low level of inbreeding, as suggested by the high number of alleles. STRUCTURE, Principal Coordinate and Neighbour Joining analysis also revealed that the Sicilian population was fairly divergent compared to other Italian populations. Moreover, migration was present across all populations, with the exception of the Sicilian one, confirming its isolation relative to the mainland. CONCLUSIONS: This is the first study characterising the genetic structure of the invasive species D. suzukii in Italy. Our analysis showed extensive genetic homogeneity among D. suzukii collected in Italy. The relatively isolated Sicilian population suggests a largely human-mediated migration pattern, while the warm climate in this region allows the production of soft fruit, and the associated D. suzukii reproductive season occurring much earlier than on the rest of the peninsula.


Assuntos
Biologia Computacional/métodos , Drosophila/genética , Variação Genética , Genética Populacional , Repetições de Microssatélites , Análise de Sequência de DNA/métodos , Animais , Feminino , Espécies Introduzidas , Itália , Masculino , Filogenia
7.
J Insect Sci ; 16(1)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27638948

RESUMO

Transient receptor potential (TRP) channels are an ancient family of cation channels, working as metabotropic triggers, which respond to physical and chemical environmental cues. Perception of chemical signals mediate reproductive behaviors and is therefore an important target for sustainable management tactics against the codling moth Cydia pomonella L. (Lepidoptera: Tortricidae). However, olfactory behavior strongly depends on diel periodicity and correlation of chemical with physical cues, like temperature, and physical cues thus essentially contribute to the generation of behavioral response. From an antennal transcriptome generated by next generation sequencing, we characterized five candidate TRPs in the codling moth. The coding DNA sequence of one of these was extended to full length, and phylogenetic investigation revealed it to be orthologous of the TRPA5 genes, reported in several insect genomes as members of the insect TRPA group with unknown function but closely related to the thermal sensor pyrexia Reverse transcription PCR revealed the existence of five alternate splice forms of CpTRPA5. Identification of a novel TRPA and its splice forms in codling moth antennae open for investigation of their possible sensory roles and implications in behavioral responses related to olfaction.


Assuntos
Anquirinas/genética , Regulação da Expressão Gênica , Proteínas de Insetos/genética , Mariposas/genética , Animais , Anquirinas/metabolismo , Antenas de Artrópodes/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Insetos/metabolismo , Larva/genética , Larva/metabolismo , Mariposas/crescimento & desenvolvimento , Mariposas/metabolismo , Filogenia , Isoformas de Proteínas/genética , Análise de Sequência de DNA
8.
Mol Biol Evol ; 31(5): 1059-65, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24554779

RESUMO

Here, we report the surprising and, to our knowledge, unique example of horizontal interkingdom transfer of a human opportunistic pathogen (Propionibacterium acnes) to a crop plant (the domesticated grapevine Vitis vinifera L.). Humans, like most organisms, have established a long-lasting cohabitation with a variety of microbes, including pathogens and gut-associated bacteria. Studies which have investigated the dynamics of such associations revealed numerous cases of bacterial host switches from domestic animals to humans. Much less is, however, known about the exchange of microbial symbionts between humans and plants. Fluorescent in situ hybridization localized P. acnes in the bark, in xylem fibers, and, more interestingly, inside pith tissues. Phylogenetic and population genetic analyses suggest that the establishment of the grapevine-associated P. acnes as obligate endophyte is compatible with a recent transfer event, likely during the Neolithic, when grapevine was domesticated.


Assuntos
Acne Vulgar/microbiologia , Endófitos/isolamento & purificação , Propionibacterium acnes/genética , Propionibacterium acnes/isolamento & purificação , Vitis/microbiologia , Proteínas de Bactérias/genética , DNA Bacteriano/genética , DNA Ribossômico/genética , Endófitos/genética , Evolução Molecular , Genes Bacterianos , Humanos , Hibridização in Situ Fluorescente , Filogenia , Propionibacterium acnes/fisiologia , Recombinases Rec A/genética , Especificidade da Espécie , Simbiose/genética
9.
Proc Biol Sci ; 282(1803): 20142571, 2015 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-25673679

RESUMO

Left-right asymmetries are common properties of nervous systems. Although lateralized sensory processing has been well studied, information is lacking about how asymmetries are represented at the level of neural coding. Using in vivo functional imaging, we identified a population-level left-right asymmetry in the honey bee's primary olfactory centre, the antennal lobe (AL). When both antennae were stimulated via a frontal odour source, the inter-odour distances between neural response patterns were higher in the right than in the left AL. Behavioural data correlated with the brain imaging results: bees with only their right antenna were better in discriminating a target odour in a cross-adaptation paradigm. We hypothesize that the differences in neural odour representations in the two brain sides serve to increase coding capacity by parallel processing.


Assuntos
Abelhas/fisiologia , Animais , Antenas de Artrópodes/fisiologia , Comportamento Animal , Encéfalo/fisiologia , Cálcio/metabolismo , Lateralidade Funcional/fisiologia , Odorantes , Olfato/fisiologia
10.
Proc Biol Sci ; 282(1804): 20143018, 2015 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-25716789

RESUMO

The Drosophila pheromone cis-11-octadecenyl acetate (cVA) is used as pheromone throughout the melanogaster group and fulfils a primary role in sexual and social behaviours. Here, we found that Drosophila suzukii, an invasive pest that oviposits in undamaged ripe fruit, does not produce cVA. In fact, its production site, the ejaculatory bulb, is atrophied. Despite loss of cVA production, its receptor, Or67d, and cognate sensillum, T1, which are essential in cVA-mediated behaviours, were fully functional. However, T1 expression was dramatically reduced in D. suzukii, and the corresponding antennal lobe glomerulus, DA1, minute. Behavioural responses to cVA depend on the input balance of Or67d neurons (driving cVA-mediated behaviours) and Or65a neurons (inhibiting cVA-mediated behaviours). Accordingly, the shifted input balance in D. suzukii has reversed cVA's role in sexual behaviour: perfuming D. suzukii males with Drosophila melanogaster equivalents of cVA strongly reduced mating rates. cVA has thus evolved from a generic sex pheromone to a heterospecific signal that disrupts mating in D. suzukii, a saltational shift, mediated through offsetting the input balance that is highly conserved in congeneric species. This study underlines that dramatic changes in a species' sensory preference can result from rather 'simple' numerical shifts in underlying neural circuits.


Assuntos
Comunicação Animal , Drosophila/fisiologia , Feromônios/metabolismo , Animais , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Feminino , Masculino , Dados de Sequência Molecular , Neurônios/fisiologia , Feromônios/genética , Filogenia , Análise de Sequência de DNA
11.
Sci Rep ; 14(1): 1198, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216589

RESUMO

Substrate-borne vibrational communication is common in pentatomids. Although several works exist on the vibrational communication of Halyomorpha halys, its vibrational behavior post diapause has not been investigated. In this study, we recorded H. halys overwintered adults using laser doppler vibrometers at three temperatures: 10 °C (inactivity), 18 °C (breaking of diapause), and 25 °C (peak of mating activity). The aim was to assess the effect of temperature on the signaling, motility, and survival of H. halys. The insects were sexed into different cages and recorded separately or joined with a cage of the opposite sex. We calculated the total time spent on signaling and walking per replica. The males predominantly emitted male signal 1 (MS1) throughout the four months of recordings. The females exclusively emitted female signal 2 (FS2) when joined with the opposite sex cage the first two months of recordings. Interestingly, they also started FS2 signaling when recorded separately, after two months. No signaling was recorded at 10 °C. At 25 °C, the signaling latency time before vibrational signaling was 24 h compared to 23 days at 18 °C. The short latency time at 25 °C correlated with a higher death rate in early stages of recording. Male walking activity was significantly higher in joined cages at 18 °C and 25 °C, suggesting the increased searching behavior near the opposite sex. Overwintered H. halys could adapt to different conditions whereas low temperatures maintain the diapause which is characterized by no signaling activity. Our results provide a foundation for bioclimatic modeling of climate change effects on H. halys and insights into the use of vibrational playbacks for mass trapping and monitoring as control techniques.


Assuntos
Diapausa , Heterópteros , Animais , Feminino , Masculino , Temperatura , Temperatura Baixa , Reprodução
12.
Trends Plant Sci ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744599

RESUMO

Living organisms use both chemical and mechanical stimuli to survive in their environment. Substrate-borne vibrations play a significant role in mediating behaviors in animals and inducing physiological responses in plants, leading to the emergence of the discipline of biotremology. Biotremology is experiencing rapid growth both in fundamental research and in applications like pest control, drawing attention from diverse audiences. As parallels with concepts and approaches in chemical ecology emerge, there is a pressing need for a shared standardized vocabulary in the area of overlap for mutual understanding. In this article, we propose an updated set of terms in biotremology rooted in chemical ecology, using the suffix '-done' derived from the classic Greek word 'δονέω' (pronounced 'doneo'), meaning 'to shake'.

13.
Proc Biol Sci ; 280(1760): 20130267, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23595270

RESUMO

Understanding the processing of odour mixtures is a focus in olfaction research. Through a neuroethological approach, we demonstrate that different odour types, sex and habitat cues are coded together in an insect herbivore. Stronger flight attraction of codling moth males, Cydia pomonella, to blends of female sex pheromone and plant odour, compared with single compounds, was corroborated by functional imaging of the olfactory centres in the insect brain, the antennal lobes (ALs). The macroglomerular complex (MGC) in the AL, which is dedicated to pheromone perception, showed an enhanced response to blends of pheromone and plant signals, whereas the response in glomeruli surrounding the MGC was suppressed. Intracellular recordings from AL projection neurons that transmit odour information to higher brain centres, confirmed this synergistic interaction in the MGC. These findings underscore that, in nature, sex pheromone and plant odours are perceived as an ensemble. That mating and habitat cues are coded as blends in the MGC of the AL highlights the dual role of plant signals in habitat selection and in premating sexual communication. It suggests that the MGC is a common target for sexual and natural selection in moths, facilitating ecological speciation.


Assuntos
Encéfalo/fisiologia , Sinais (Psicologia) , Ecossistema , Mariposas/fisiologia , Comportamento Sexual Animal/fisiologia , Olfato/fisiologia , Potenciais de Ação/fisiologia , Animais , Feminino , Masculino , Microscopia Confocal , Fatores Sexuais , Transdução de Sinais/fisiologia , Transmissão Sináptica/fisiologia
14.
Pest Manag Sci ; 79(7): 2397-2414, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36811274

RESUMO

BACKGROUND: Classical biological control has been identified as the most promising approach to limit the impact of the invasive pest species Halyomorpha halys (Heteroptera: Pentatomidae). This study investigated the parasitism rate at sites where the biocontrol agent Trissolcus japonicus (Hymenoptera: Scelionidae) was released and where its unintentional introduction took place, in the Trentino-South Tyrol region. The effect of land-use composition was studied to understand which factors favor the establishment of hosts and parasitoids, including native and exotic species. RESULTS: The released T. japonicus were detected a year after the start of the program, with a significant parasitoid impact and discovery, compared to control sites. Trissolcus japonicus was the most abundant H. halys parasitoid, and Trissolcus mitsukurii and Anastatus bifasciatus were recorded also. The efficacy of T. mitsukurii was lower in sites where T. japonicus was successfully established, suggesting a possible competitive interaction. Parasitism level by T. japonicus at the release sites was 12.5% in 2020 and 16.4% in 2021. The combined effect of predation and parasitization increased H. halys mortality up to 50% at the release sites. Landscape composition analysis showed that both H. halys and T. japonicus were more likely to be found at sites with lower altitude and with permanent crops, whereas other hosts and parasitoids preferred different conditions. CONCLUSION: Trissolcus japonicus showed a promising impact on H. halys, at release and adventive sites, with minor nontarget effects, mediated by landscape heterogeneity. The prevalence of T. japonicus in landscapes with permanent crops could support IPM in the future. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Heterópteros , Vespas , Animais , Comportamento Predatório , Espécies Introduzidas , Produtos Agrícolas
15.
Insects ; 14(7)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37504661

RESUMO

The brown marmorated stink bug (BMSB), Halyomorpha halys, is a phytophagous invasive pest native to south-eastern Asia, and it is now distributed worldwide. This species is considered to be one of the most damaging insect pests in North America and in Europe. In agriculture, the predominant approach to managing BMSB is based on the use of insecticides, specifically pyrethroids and neonicotinoids. Unfortunately, the biology of the species and its facility to develop mechanisms of resistance to available pesticides has induced farmers and scientists to develop different, least-toxic, and more effective strategies of control. In a territorial area-wide approach, the use of a classical biological control program in combination with other least-toxic strategies has been given prominent consideration. Following exploratory surveys in the native range, attention has focused on Trissolcus japonicus, a small scelionid egg parasitoid wasp that is able to oviposit and complete its larval development in a single egg of H. halys. A common method for detecting egg parasitoids in the native range involves the placement of so-called 'sentinel' egg masses of the pest in the environment for a short period, which are then returned to the laboratory to determine if any of them are parasitized. Outside of the area of origin, the use of fertile sentinel eggs of the alien species may lead to the further release of the pest species; an alternative is to use sterile sentinel eggs to record the presence of new indigenous egg parasitoids or to detect the dispersal of alien species (in this case, T. japonicus) released in a new environment to control the target insect pest species. This study evaluated the performance of three types of sterile sentinel eggs as a suitable substrate for the oviposition and larval development of the egg parasitoid T. japonicus in a context of combining classical biological control with a Sterile Insect Technique (SIT) approach.

16.
Insects ; 14(5)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37233089

RESUMO

The brown marmorated stink bug, Halyomorpha halys, is a pentatomid bug of Eastern Asian origin that became an economically relevant pest in the Eurasian and American continents. Management of this species is limited to use of chemical insecticides: an inefficient method due to the strong adaptability of the target pest. The sterile insect technique (SIT) is potentially a valid tactic in the search for nontoxic alternatives. In this work, we investigated the suitability of mass-trapped overwintering males, collected during the aggregation phase before the winter diapause, for their release as competitive sterile males in an SIT programme. Differently from previous studies, irradiation was applied with a linear accelerator device that produced high-energy photons. Following a similar scientific protocol with newly emerged irradiated males, the effects of X-ray irradiation on physiological parameters (longevity, fecundity and fertility) were assessed. In addition, behavioural bioassays were carried out in no-choice conditions to evaluate if irradiation interferes with mating processes. The results are very encouraging; the effects of the irradiation at 32 Gy did not differ from the controls in the longevity or fecundity of the exposed overwintering adults. The hatching rate of the eggs laid by the fertile females that had mated with the irradiated males was less than 5%. The results of behavioural bioassays showed that the irradiation did not cause a significant impact on the quality of the sterile males. More research is warranted to evaluate the mating competitiveness of sterile males in semi-field and field conditions.

17.
Insects ; 14(4)2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37103168

RESUMO

The painted bug, Bagrada hilaris, is an agricultural pest in its original areas (Africa, South Asia, and the Middle East), and it has recently been recorded as an invasive species in southwestern part of the US, Chile, Mexico, and two islands in the Mediterranean basin. Its polyphagous diet causes severe damage to economically important crops. The control of this pest is primarily achieved by means of synthetic pesticides, which are often expensive, ineffective, and harmful to the ecosystem. Recent physiological bioassays to assess its potential control through the sterile insect technique demonstrated that mating between untreated females and males irradiated at doses of 64 and 100 Gy, respectively, resulted in 90% and 100% sterility of the eggs produced by the females. In this study, the mating abilities of virgin males irradiated at 60 and 100 Gy with virgin females were measured through a study of short-range courtship mediated by vibrational communication. The results indicate that males irradiated at 100 Gy emit signals with lower peak frequencies, mate significantly less than unirradiated males do, and do not surpass the early stages of courtship. Conversely, males irradiated at 60 Gy present vibrational signal frequencies that are comparable to those of the control and successfully mated males. Our findings suggest that B. hilaris individuals irradiated at 60 Gy are good candidates for the control of this species, given that they retain sexual competitiveness regardless of their sterility, through an area-wide program that incorporates the sterile insect technique.

18.
J Chem Ecol ; 38(8): 1017-30, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22730108

RESUMO

The Palearctic planthopper Hyalesthes obsoletus is the natural vector of the grapevine yellow disease Bois noir. Grapevine is an occasional host plant of this polyphagous planthopper. To deepen our knowledge of the role of plant volatile organic compounds for H. obsoletus host plant searching, we carried out behavioral, morphological, and electrophysiological studies. We tested the attraction of H. obsoletus to nettle, field bindweed, hedge bindweed, chaste tree, and grapevine by using a Y-shaped olfactometer. The results showed a significant attraction of male H. obsoletus to chaste tree, and of the females to nettle. Male H. obsoletus were repelled by odor from hedge bindweed. Ultrastructural studies of the antennae showed at least two types of olfactory sensilla at the antennal pedicel: plaque organs and trichoid sensilla. Volatile organic compounds from nettle and chaste tree were collected, and the extracts were analyzed by coupling gas-chromatography to both mass-spectrometry and electroantennography. The volatile organic compounds that elicited electrophysiological responses in male and female antennae were identified. These findings are discussed with respect to behavior of H. obsoletus males and females in the field.


Assuntos
Hemípteros/fisiologia , Compostos Orgânicos Voláteis/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Calystegia/química , Convolvulus/química , Fenômenos Eletrofisiológicos , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Hemípteros/efeitos dos fármacos , Masculino , Odorantes , Percepção , Urtica dioica/química , Vitex/química , Vitis/química , Compostos Orgânicos Voláteis/química
19.
Insects ; 13(5)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35621775

RESUMO

Trissolcus mitsukurii and Trissolcus japonicus are two Asian egg parasitoids associated with different pentatomids such as Halyomorpha halys. Adventive populations of T. mitsukurii were found in Northern Italy, suggesting its employment as a biological control agent (BCA) against H. halys. Nevertheless, to reduce the latter's population, T. japonicus was released in Italy. Releasing an exotic parasitoid requires investigating the interaction between the BCA and the environment to avoid negative impacts on the entomofauna of the new habitat. Trissolcus mitsukurii is mainly associated with Nezara viridula in its native area. Therefore, we investigated and compared the ability of female T. mitsukurii and T. japonicus to distinguish between naturally released cues of H. halys and N. viridula. A single parasitoid was exposed to contact kairomones of both pests to evaluate its modifications in orthokinetic and locomotory behaviour. The behaviour of female T. mitsukurii was also tested on synthetic compounds simulating the cues of the two pentatomids. When naturally released cues were used, T. japonicus preferred the traces of H. halys, while T. mitsukurii preferred N. viridula's cues. Moreover, the attraction of T. mitsukurii to N. viridula's cues was confirmed with synthetic cues. Additional studies are needed to judge if this parasitoid can be used as a BCA.

20.
Insects ; 13(9)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36135488

RESUMO

The bagrada bug, Bagrada hilaris, is an invasive insect pest in the family Brassicaceae that causes economically important damage to crops. It was originally present in Asia, the Middle East, and Africa, and was reported as invasive in the southwestern part of the US, in Chile, and on a few islands in the Mediterranean Basin. In its native range, B. hilaris is controlled by several egg parasitoid species that are under consideration as potential biological control agents. This research evaluated the impact of gamma irradiation on life history parameters, e.g., the fecundity, fertility, and longevity of B. hilaris, as a critical step towards assessing the feasibility of using the sterile insect technique against this recent invasive pest. Newly emerged adults of a laboratory colony originally collected from the island of Pantelleria (Italy) were gamma-irradiated. Life history parameters were evaluated at nine different doses, ranging from 16 Gy to 140 Gy. The minimal dose to approach full sterility was 100 Gy. Irradiation up to a maximum of 140 Gy apparently did not negatively impact the longevity of the adults. Even if both genders are sensitive to irradiation, the decline in fecundity for irradiated females could be exploited to release irradiated males safely to apply the SIT in combination with classical biological control. The data presented here allow us to consider, for the first time, the irradiation of bagrada adults as a suitable and feasible technique that could contribute to guaranteeing a safe approach to control this important pest species in agro-ecosystems. More research is warranted on the competitive fitness of irradiated males to better understand mating behavior as well as elucidate the possible mechanisms of sperm selection by polyandric B. hilaris females.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA