Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(4): e202302709, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-37823681

RESUMO

An exciting direction in metal-organic frameworks involves the design and synthesis of flexible structures which can reversibly adapt their structure when triggered by external stimuli. Controlling the extent and nature of response in such solids is critical in order to develop custom dynamic materials for advanced applications. Towards this, it is highly important to expand the diversity of existing flexible MOFs, generating novel materials and gain an in-depth understanding of the associated dynamic phenomena, eventually unlocking key structure-property relationships. In the present work, we successfully utilized reticular chemistry for the construction of two novel series of highly crystalline, flexible rare-earth MOFs, RE-thc-MOF-2 and RE-teb-MOF-1. Extensive single-crystal to single-crystal structural analyses coupled with detailed gas and vapor sorption studies, shed light onto the unique responsive behavior. The development of these series is related to the reported RE-thc-MOF-1 solids which were found to display a unique continuous breathing and gas-trapping property. The synthesis of RE-thc-MOF-2 and RE-teb-MOF-1 materials represents an important milestone as they provide important insights into the key factors that control the responsive properties of this fascinating family of flexible materials and demonstrates that it is possible to control their dynamic behavior and the associated gas and vapor sorption properties.

2.
Angew Chem Int Ed Engl ; 62(12): e202218429, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36656785

RESUMO

In this work we report a strategy for generating porosity in hybrid metal halide materials using molecular cages that serve as both structure-directing agents and counter-cations. Reaction of the [2.2.2] cryptand (DHS) linker with PbII in acidic media gave rise to the first porous and water-stable 2D metal halide semiconductor (DHS)2 Pb5 Br14 . The corresponding material is stable in water for a year, while gas and vapor-sorption studies revealed that it can selectively and reversibly adsorb H2 O and D2 O at room temperature (RT). Solid-state NMR measurements and DFT calculations verified the incorporation of H2 O and D2 O in the organic linker cavities and shed light on their molecular configuration. In addition to porosity, the material exhibits broad light emission centered at 617 nm with a full width at half-maximum (FWHM) of 284 nm (0.96 eV). The recorded water stability is unparalleled for hybrid metal halide and perovskite materials, while the generation of porosity opens new pathways towards unexplored applications (e.g. solid-state batteries) for this class of hybrid semiconductors.

3.
J Am Chem Soc ; 143(27): 10250-10260, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34185543

RESUMO

Guest responsive porous materials represent an important and fascinating class of multifunctional solids that have attracted considerable attention in recent years. An understanding of how these structures form is essential toward their rational design, which is a prerequisite for the development of tailor-made materials for advanced applications. We herein report a novel series of stable rare-earth (RE) MOFs that show a rare continuous breathing behavior and an unprecedented gas-trapping property. We used an asymmetric 4-c tetratopic carboxylate-based organic ligand that is capable of affording highly crystalline materials upon controlled reaction with RE cations. These MOFs, denoted as RE-thc-MOF-1 (RE: Y3+, Sm3+, Eu3+, Tb3+, Dy3+, Ho3+, and Er3+), feature hexanuclear RE6 clusters that display a highly unusual connectivity and serve as unique 8-c hemi-cuboctahedral secondary building block, resulting in a new (3,3,8)-c thc topology. Extensive single-crystal to single-crystal structural analyses coupled with detailed gas (N2, Ar, Kr, CO2, CH4, and Xe) and vapor (EtOH, CH3CN, C6H6, and C6H14) sorption studies, supported by accurate theoretical calculations, shed light onto the unique swelling behavior. The results reveal a synergistic action involving steric effects, associated with coordinated solvent molecules and 2-fluorobenzoate (2-FBA) nonbridging ligands, as well as cation-framework electrostatic interactions. We were able to probe the individual role of the coordinated solvent molecules and 2-FBA ligands and found that both cooperatively control the gas-breathing and -trapping properties, while 2-FBA controls the vapor adsorption selectivity. These findings provide unique opportunities toward the design and development of tunable RE-based flexible MOFs with tailor-made properties.

4.
J Am Chem Soc ; 142(37): 15986-15994, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32845629

RESUMO

Ligand modification in MOFs provides great opportunities not only for the development of functional materials with new or enhanced properties but also for the discovery of novel structures. We report here that a sulfone-functionalized tetrahedral carboxylate-based ligand is capable of directing the formation of new and fascinating MOFs when combined with Zr4+/Hf4+ and rare-earth metal cations (RE) with improved gas-sorption properties. In particular, the resulting M-flu-SO2 (M: Zr, Hf) materials display a new type of the augmented flu-a net, which is different as compared to the flu-a framework formed by the nonfunctionalized tetrahedral ligand. In terms of properties, a remarkable increase in the CO2 uptake is observed that reaches 76.6% and 61.6% at 273 and 298 K and 1 bar, respectively. When combined with REs, the sulfone-modified linker affords novel MOFs, RE-hpt-MOF-1 (RE: Y3+, Ho3+, Er3+), which displays a fascinating (4, 12)-coordinated hpt net, based on nonanuclear [RE9(µ3-Ο)2(µ3-ΟΗ)12(-COO)12] clusters that serve as hexagonal prismatic building blocks. In the absence of the sulfone groups, we discovered that the tetrahedral linker directs the formation of new RE-MOFs, RE-ken-MOF-1 (RE: Y3+, Ho3+, Er3+, Yb3+), that display an unprecedented (4, 8)-coordinated ken net based on nonanuclear RE9-clusters, to serve as bicapped trigonal prismatic building units. Successful activation of the representative member Y-ken-MOF-1 reveals a high BET surface area and total pore volume reaching 2621 m2 g-1 and 0.95 cm3 g-1, respectively. These values are the highest among all RE MOFs based on nonanuclear clusters and some of the highest in the entire RE family of MOFs. The present work uncovers a unique structural diversity existing between Zr/Hf and RE-based MOFs that demonstrates the crucial role of linker design. In addition, the discovery of the new RE-hpt-MOF-1 and RE-ken-MOF-1 families of MOFs highlights the great opportunities existing in RE-MOFs in terms of structural diversity that could lead to novel materials with new properties.

5.
Inorg Chem ; 56(1): 84-91, 2017 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-28043139

RESUMO

The CsSnI3 perovskite and the corresponding SnF2-containing material with nominal composition CsSnI2.95F0.05 were synthesized by solid-state reactions and structurally characterized by powder X-ray diffraction. Both materials undergo rapid phase transformation upon exposure to air from the black orthorhombic phase (B-γ-CsSnI3) to the yellow orthorhombic phase (Y-CsSnI3), followed by irreversible oxidation into Cs2SnI6 within several hours. The phase transition occurs at a significantly lower rate in the SnF2-containing material rather than in the pure perovskite. The high hole-carrier concentration of the materials prohibits the detection of Raman signals for B-γ-CsSnI3 and induces a very strong plasmonic reflectance in the far-IR. In contrast, far-IR phonon bands and a rich Raman spectrum are observed for the Y-CsSnI3 modification below 140 cm-1 with weak frequency shift gradients versus temperatures between -95 and +170 °C. Above 170 °C, the signal is lost due to B-α-CsSnI3 re-formation. The photoluminescence spectra exhibit residual blue shifts and broadening as a sign of structural transformation initiation.

6.
Inorg Chem ; 55(15): 7414-24, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27416056

RESUMO

The synthesis, structural characterization, luminescence properties, and proton conduction performance of a new family of isostructural cationic 2D layered compounds are reported. These have the general formula [Ln(H4NMP)(H2O)2]Cl·2H2O [Ln = La(3+), Pr(3+), Sm(3+), Eu(3+), Gd(3+), Tb(3+), Dy(3+), Ho(3+), H6NMP = nitrilotris(methylphosphonic acid)], and contain Cl(-) as the counterion. In the case of Ce(3+), a 1D derivative, [Ce2(H3NMP)2(H2O)4]·4.5H2O, isostructural with the known lanthanum compound has been isolated by simply crystallization at room temperature. The octa-coordinated environment of Ln(3+) in 2D compounds is composed by six oxygen atoms from three different ligands and two oxygens from each bound water. Two of the three phosphonate groups act as both chelating and bridging linkers, while the third phosphonate group acts solely as a bridging moiety. The materials are stable at low relative humidity at less at 170 °C. However, at high relative humidity transform to other chloride-free phases, including the 1D structure. The proton conductivity of the 1D materials varies in a wide range, the highest values corresponding to the La derivative (σ ≈ 2 × 10(-3) S·cm(-1) at RH 95% and 80 °C). A lower proton conductivity, 3 × 10(-4) S·cm(-1), was measured for [Gd(H4NMP)(H2O)2]Cl·2H2O at 80 °C, which remains stable under the work conditions used. Absorption and luminescence spectra were recorded for selected [Ln(H4NMP)(H2O)2]Cl·2H2O compounds. In all of them, the observed transitions are attributed solely to f-f transitions of the lanthanide ions present, as the H4NMP(2-) organic group has no measurable absorption or luminescence properties.

7.
Inorg Chem ; 52(15): 8770-83, 2013 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-23883426

RESUMO

Two new families of divalent metal hybrid derivatives from the aromatic tetraphosphonic acids 1,4- and 1,3-bis(aminomethyl)benzene-N,N'-bis(methylenephosphonic acid), (H2O3PCH2)2-N-CH2C6H4CH2-N(CH2PO3H2)2 (designated herein as p-H8L and m-H8L) have been synthesized by crystallization at room temperature and hydrothermal conditions. The crystal structures of M[(HO3PCH2)2N(H)CH2C6H4CH2N(H)(CH2PO3H)2(H2O)2]·2H2O (M = Mg, Co, and Zn), M-(p-H6L), and M[(HO3PCH2)2N(H)CH2C6H4CH2N(H)(CH2PO3H)2]·nH2O (M = Ca, Mg, Co, and Zn and n = 1-1.5), M-(m-H6L), were solved ab initio by synchrotron powder diffraction data using the direct methods and subsequently refined using the Rietveld method. The crystal structure of the isostructural M-(p-H6L) is constituted by organic-inorganic monodimensional chains where the phosphonate moiety acts as a bidentate chelating ligand bridging two metal octahedra. M-(m-H6L) compounds exhibit a 3D pillared open-framework with small 1D channels filled with water molecules. These channels are formed by the pillaring action of the organic ligand connecting adjacent layers through the phosphonate oxygens. Thermogravimetric and X-ray thermodiffraction analyses of M-(p-H6L) showed that the integrity of their crystalline structures is maintained up to 470 K, without significant reduction of water content, while thermal decomposition takes place above 580 K. The utility of M-(p-H6L) (M = Mg and Zn) hybrid materials in corrosion protection was investigated in acidic aqueous solutions. In addition, the impedance data indicate both families of compounds display similar proton conductivities (σ ∼ 9.4 × 10(-5) S·cm(-1), at 98% RH and 297 K), although different proton transfer mechanisms are involved.

8.
ACS Appl Mater Interfaces ; 15(36): 42717-42729, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37639320

RESUMO

Hybrid metal halide semiconductors are a unique family of materials with immense potential for numerous applications. For this to materialize, environmental stability and toxicity deficiencies must be simultaneously addressed. We report here a porous, visible light semiconductor, namely, (DHS)Bi2I8 (DHS = [2.2.2] cryptand), which consists of nontoxic, earth-abundant elements, and is water-stable for more than a year. Gas- and vapor-sorption studies revealed that it can selectively and reversibly adsorb H2O and D2O at room temperature (RT) while remaining impervious to N2 and CO2. Solid-state NMR measurements and density functional theory (DFT) calculations verified the incorporation of H2O and D2O in the molecular cages, validating the porous nature. In addition to porosity, the material exhibits broad band-edge light emission centered at 600 nm with a full width at half-maximum (fwhm) of 99 nm, which is maintained after 6 months of immersion in H2O. Moreover, (DHS)Bi2I8 exhibits bacteriocidal action against three Gram-positive and three Gram-negative bacteria, including antibiotic-resistant strains. This performance, coupled with the recorded water stability and porous nature, renders it suitable for a plethora of applications, from solid-state batteries to water purification and disinfection.

9.
ACS Appl Mater Interfaces ; 14(19): 22242-22251, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35535746

RESUMO

Highly connected metal organic frameworks (MOFs) in which at least one building block has connectivity higher than twelve are very rare and much desirable. We report here the first examples of isostructural 14-connected MOFs, RE-frt-MOF-1, constructed from the assembly of 14-c hexanuclear rare-earth clusters, [RE6(µ3-X)8(COO)12]2- (RE: Y3+, Tb3+, Dy3+, Ho3+, Er3+, Yb3+ and X: OH-/F-) with a tritopic carboxylate-based organic linker. This linker serves as a 3-c and 4-c organic node resulting in the formation of a unique, trinodal (3,4,14)-c framework. RE-frt-MOF-1 are stable in air and alkaline aqueous solutions and show an intriguingly continuous, reversible breathing behavior, between a wide and a narrow-pore phase, upon guest removal. Crystallinity is retained during breathing, and single-crystal X-ray diffraction shed light into the associated structural transformation. Vapor sorption studies performed on Y-frt-MOF-1 revealed a high affinity for non-polar vapors such as n-hexane, cyclohexane, and benzene, displaying type I isotherms with high uptake at low relative pressures (<10-3 p/p0), associated with the hydrophobic nature of the 1D channels and also with their rhombic shape. In contrast, polar vapors such as acetonitrile and ethanol show type V isotherms due to favorable vapor-vapor interactions. Notably these vapors, except cyclohexane, trigger the transition from the narrow to the wide pore phase, accompanied by a remarkable increase in uptake, reaching 70.6, 109, 100.4, and 87.7% for n-hexane, benzene, acetonitrile, and ethanol, respectively.

10.
ChemMedChem ; 17(15): e202200246, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35642621

RESUMO

Local anesthetics occupy a prime position in clinical medicine as they temporarily relieve the pain by blocking voltage-gated sodium channels. However, limited structural diversity, problems with the efficiency of syntheses and increasing toxicity, mean that alternative scaffolds with improved chemical syntheses are urgently needed. Here, we demonstrate a multicomponent reaction (MCR)-based approach both towards the synthesis of commercial local anesthetics and towards novel derivatives as potential anesthesia candidates via scaffold hopping. The reactions are efficient and scalable, and several single-crystal structures have been obtained. In addition, our methodology has been applied to the synthesis of the antianginal drug ranolazine, via an Ugi three-component reaction. Representative derivatives from our libraries were evaluated as neuronal activity inhibitors using local field potential recordings (LFPs) in mouse hippocampal brain slices and showed very promising results. This study highlights new opportunities in drug discovery targeting local anesthetics.


Assuntos
Anestésicos Locais , Descoberta de Drogas , Anestésicos Locais/farmacologia , Animais , Camundongos
11.
RSC Adv ; 11(23): 13743-13750, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35423909

RESUMO

In the race for viable solutions that could slow down carbon emissions and help in meeting the climate change targets a lot of effort is being made towards the development of suitable CO2 adsorbents with high surface area, tunable pore size and surface functionalities that could enhance selective adsorption. Here, we explored the use of silsesquioxane pillared graphene oxide for CO2 capture; we modified silsesquioxane loading and processing parameters in order to obtain pillared structures with nanopores of the tailored size and surface properties to maximize the CO2 sorption capacity. Powder X-ray diffraction, XPS and FTIR spectroscopies, thermal analysis (DTA/TGA), surface area measurements and CO2 adsorption measurements were employed to characterize the materials and evaluate their performance. Through this optimisation process, materials with good CO2 storage capacities of up to 1.7/1.5 mmol g-1 at 273 K/298 K in atmospheric pressure, were achieved.

12.
ACS Appl Mater Interfaces ; 9(51): 44560-44566, 2017 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-29215862

RESUMO

In recent years, the design and discovery of new metal-organic framework (MOF) platforms with distinct structural features and tunable chemical composition has remarkably enhanced by applying reticular chemistry rules and the molecular building block (MBB) approach. We targeted the synthesis of new rare earth (RE)-MOF platforms based on a rectangular-shaped 4-c linker, acting as a rigid organic MBB. Accordingly, we designed and synthesized the organic ligand 1,2,4,5-tetrakis(4-carboxyphenyl)-3,6-dimethyl-benzene (H4L), in which the two methyl groups attached to the central phenyl ring lock the four peripheral carboxyphenyl groups to an orthogonal/vertical position. We report here a new family of RE-MOFs featuring the novel inorganic building unit, RE4(µ3-O)2 (RE: Y3+, Tb3+, Dy3+, Ho3+, Er3+, and Yb3+), with planar D2h symmetry. The rigid 4-c linker, H4L, directs the in situ assembly of the unique 8-c RE4(µ3-O)2(COO)8 cluster, resulting in the formation of the first (4, 8)-c RE-MOFs with csq topology, RE-csq-MOF-1. The structures of the yttrium (Y-csq-MOF-1) and holmium (Ho-csq-MOF-1) analogues were determined by single-crystal X-ray diffraction analysis. Y-csq-MOF-1 was successfully activated and tested for Xe/Kr separation. The results show that Y-csq-MOF-1 has high isosteric heat of adsorption for Xe (33.8 kJ mol-1), with high Xe/Kr selectivity (IAST 12.1, Henry 12.9) and good Xe uptake (1.94 mmol g-1 at 298 K and 1 bar), placing this MOF among the top-performing adsorbents for Xe/Kr separation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA