Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cardiovasc Pharmacol ; 65(3): 241-51, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25658461

RESUMO

: Cardiovascular disease is the number 1 cause of morbidity and mortality in the United States. The most common manifestation of cardiovascular disease is myocardial infarction (MI), which can ultimately lead to congestive heart failure. Cell therapy (cardiomyoplasty) is a new potential therapeutic treatment alternative for the damaged heart. Recent preclinical and clinical studies have shown that mesenchymal stem cells (MSCs) are a promising cell type for cardiomyoplasty applications. However, a major limitation is the poor survival rate of transplanted stem cells in the infarcted heart. miR-133a is an abundantly expressed microRNA (miRNA) in the cardiac muscle and is downregulated in patients with MI. We hypothesized that reprogramming MSCs using miRNA mimics (double-stranded oligonucleotides) will improve survival of stem cells in the damaged heart. MSCs were transfected with miR-133a mimic and antagomirs, and the levels of miR-133a were measured by quantitative real-time polymerase chain reaction. Rat hearts were subjected to MI and MSCs transfected with miR-133a mimic or antagomir were implanted in the ischemic hearts. Four weeks after MI, cardiac function, cardiac fibrosis, miR-133a levels, and apoptosis-related genes (Apaf-1, Caspase-9, and Caspase-3) were measured in the heart. We found that transfecting MSCs with miR-133a mimic improves survival of MSCs as determined by the MTT assay. Similarly, transplantation of miR-133a mimic transfected MSCs in rat hearts subjected to MI led to a significant increase in cell engraftment, cardiac function, and decreased fibrosis when compared with MSCs only or MI groups. At the molecular level, quantitative real-time polymerase chain reaction data demonstrated a significant decrease in expression of the proapoptotic genes; Apaf-1, caspase-9, and caspase-3 in the miR-133a mimic transplanted group. Furthermore, luciferase reporter assay confirmed that miR-133a is a direct target for Apaf-1. Overall, bioengineering of stem cells through miRNAs manipulation could potentially improve the therapeutic outcome of patients undergoing stem cell transplantation for MI.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Infarto do Miocárdio/cirurgia , Miocárdio/metabolismo , Engenharia Tecidual/métodos , Animais , Apoptose , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Fibrose , Regulação da Expressão Gênica , Sobrevivência de Enxerto , MicroRNAs/genética , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Ratos Endogâmicos F344 , Recuperação de Função Fisiológica , Regeneração , Volume Sistólico , Fatores de Tempo , Transfecção
2.
J Pathol ; 231(3): 290-300, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24037780

RESUMO

'Oxidative stress' is a term defining states of elevated reactive oxygen species (ROS) levels. Normally, ROS control several physiological processes, such as host defence, biosynthesis of hormones, fertilization and cellular signalling. However, oxidative stress has been involved in different pathologies, including metabolic syndrome and numerous cardiovascular diseases. A major source of ROS involved in both metabolic syndrome and cardiovascular pathophysiology is the NADPH oxidase (NOX) family of enzymes. NOX is a multi-component enzyme complex that consists of membrane-bound cytochrome b-558, which is a heterodimer of gp91phox and p22phox, cytosolic regulatory subunits p47phox and p67phox, and the small GTP-binding protein Rac1. Rac1 plays many important biological functions in cells, but perhaps the most unique function of Rac1 is its ability to bind and activate the NOX complex. Furthermore, Rac1 has been reported to be a key regulator of oxidative stress through its co-regulatory effects on both nitric oxide (NO) synthase and NOX. Therefore, the main goal of this review is to give a brief outline about the important role of the Rac1-NOX axis in the pathophysiology of both metabolic syndrome and cardiovascular disease.


Assuntos
Doenças Cardiovasculares/enzimologia , Síndrome Metabólica/enzimologia , NADPH Oxidases/metabolismo , Estresse Oxidativo , Proteínas rac de Ligação ao GTP/metabolismo , Animais , Antioxidantes/uso terapêutico , Fármacos Cardiovasculares/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Inibidores Enzimáticos/uso terapêutico , Humanos , Síndrome Metabólica/tratamento farmacológico , NADPH Oxidases/antagonistas & inibidores , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais , Proteínas rac de Ligação ao GTP/antagonistas & inibidores , Proteínas rac1 de Ligação ao GTP/metabolismo
3.
Electrophoresis ; 31(12): 1934-6, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20503203

RESUMO

Extracting and concentrating mitochondrial protein complexes from gel strips after blue native PAGE (BN-PAGE) can be daunting tasks using the traditional methods, such as electroelution, passive diffusion and centrifugal concentration. We present a simplified gel electrophoresis method to concentrate mitochondrial protein complexes with excellent recovery rate. Mitochondrial complex I present in a long gel strip from BN-PAGE can be easily concentrated into a 0.8 cm gel strip when a second BN-PAGE is performed with a Y-shaped gel and the addition of 0.01% n-dodecyl beta-D-maltoside and 0.001% SDS in the cathode buffer. Once completed, the concentrated protein complex in the gel strip is ready for SDS-PAGE or proteomic studies.


Assuntos
Complexo I de Transporte de Elétrons/isolamento & purificação , Eletroforese em Gel de Poliacrilamida/métodos , Membranas Mitocondriais/química , Proteínas Mitocondriais/química , Animais , Complexo I de Transporte de Elétrons/química , Glucosídeos/química , Ratos , Dodecilsulfato de Sódio/química
4.
JAMA ; 303(21): 2165-71, 2010 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-20516417

RESUMO

CONTEXT: Laboratory investigations suggest that exposure to hyperoxia after resuscitation from cardiac arrest may worsen anoxic brain injury; however, clinical data are lacking. OBJECTIVE: To test the hypothesis that postresuscitation hyperoxia is associated with increased mortality. DESIGN, SETTING, AND PATIENTS: Multicenter cohort study using the Project IMPACT critical care database of intensive care units (ICUs) at 120 US hospitals between 2001 and 2005. Patient inclusion criteria were age older than 17 years, nontraumatic cardiac arrest, cardiopulmonary resuscitation within 24 hours prior to ICU arrival, and arterial blood gas analysis performed within 24 hours following ICU arrival. Patients were divided into 3 groups defined a priori based on PaO(2) on the first arterial blood gas values obtained in the ICU. Hyperoxia was defined as PaO(2) of 300 mm Hg or greater; hypoxia, PaO(2) of less than 60 mm Hg (or ratio of PaO(2) to fraction of inspired oxygen <300); and normoxia, not classified as hyperoxia or hypoxia. MAIN OUTCOME MEASURE: In-hospital mortality. RESULTS: Of 6326 patients, 1156 had hyperoxia (18%), 3999 had hypoxia (63%), and 1171 had normoxia (19%). The hyperoxia group had significantly higher in-hospital mortality (732/1156 [63%; 95% confidence interval {CI}, 60%-66%]) compared with the normoxia group (532/1171 [45%; 95% CI, 43%-48%]; proportion difference, 18% [95% CI, 14%-22%]) and the hypoxia group (2297/3999 [57%; 95% CI, 56%-59%]; proportion difference, 6% [95% CI, 3%-9%]). In a model controlling for potential confounders (eg, age, preadmission functional status, comorbid conditions, vital signs, and other physiological indices), hyperoxia exposure had an odds ratio for death of 1.8 (95% CI, 1.5-2.2). CONCLUSION: Among patients admitted to the ICU following resuscitation from cardiac arrest, arterial hyperoxia was independently associated with increased in-hospital mortality compared with either hypoxia or normoxia.


Assuntos
Reanimação Cardiopulmonar , Parada Cardíaca/mortalidade , Mortalidade Hospitalar , Hiperóxia/mortalidade , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Bases de Dados Factuais , Feminino , Parada Cardíaca/terapia , Humanos , Unidades de Terapia Intensiva/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Estados Unidos/epidemiologia
5.
Acad Emerg Med ; 27(5): 388-393, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31778272

RESUMO

OBJECTIVES: Emergency departments (EDs) patient satisfaction metrics are highly valued by hospitals, health systems, and payers, yet these metrics are challenging to analyze and interpret. Accurate interpretation involves selection of the most appropriate peer group for benchmark comparisons. We hypothesized that the selection of different benchmark peer groups would yield different interpretations of Press Ganey (PG) patient satisfaction scores. METHODS: Emergency department PG summary ratings of "doctors section" and "likelihood-to-recommend" raw scores and corresponding percentiles were derived for three benchmark peer groups from three academic years (2016, 2017, and 2018). The three benchmarks are: 1) the PG Large database; 2) the PG University HealthSystem Consortium (UHC) database; and 3) the Academy of Administrators in Academic Emergency Medicine (AAAEM) database, which is composed only of EDs from academic health centers with emergency medicine residency training programs. Raw scores were converted to percentile ranks for each distribution and then compared using Welch's ANOVA and Games-Howell pairwise comparisons. RESULTS: For both patient satisfaction raw scores evaluated, the AAAEM database was noted to have significantly higher percentile ranks when compared to the PG Large and PG UHC databases. These results were consistent for all three time frames assessed. CONCLUSIONS: Benchmarking with different peer groups provides different results, with similar patient satisfaction raw scores resulting in higher percentile ranks using the AAAEM database compared to the two PG databases. The AAAEM database should be considered the most appropriate peer group for benchmarking academic EDs.


Assuntos
Benchmarking/métodos , Serviço Hospitalar de Emergência/estatística & dados numéricos , Satisfação do Paciente/estatística & dados numéricos , Bases de Dados Factuais , Medicina de Emergência/organização & administração , Humanos , Inquéritos e Questionários
6.
Front Cell Dev Biol ; 8: 130, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32211408

RESUMO

Studies on cardiac progenitor cells (CPCs) and their derived exosomes therapeutic potential have demonstrated only modest improvements in cardiac function. Therefore, there is an unmet need to improve the therapeutic efficacy of CPCs and their exosomes to attain clinically relevant improvement in cardiac function. The hypothesis of this project is to assess the therapeutic potential of exosomes derived from human CPCs (hCPCs) cultured under normoxia (21% O2), physoxia (5% O2) and hypoxia (1% O2) conditions. hCPCs were characterized by immunostaining of CPC-specific markers (NKX-2.5, GATA-4, and c-kit). Cell proliferation and cell death assay was not altered under physoxia. A gene expression qPCR array (84 genes) was performed to assess the modulation of hypoxic genes under three different oxygen conditions as mentioned above. Our results demonstrated that very few hypoxia-related genes were modulated under physoxia (5 genes upregulated, 4 genes down regulated). However, several genes were modulated under hypoxia (23 genes upregulated, 9 genes downregulated). Furthermore, nanoparticle tracking analysis of the exosomes isolated from hCPCs under physoxia had a 1.6-fold increase in exosome yield when compared to normoxia and hypoxia conditions. Furthermore, tube formation assay for angiogenesis indicated that exosomes derived from hCPCs cultured under physoxia significantly increased tube formation as compared to no-exosome control, 21% O2, and 1% O2 groups. Overall, our study demonstrated the therapeutic potential of physoxic oxygen microenvironment cultured hCPCs and their derived exosomes for myocardial repair.

7.
Front Bioeng Biotechnol ; 8: 567842, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042968

RESUMO

Recent advances in cardiac tissue engineering have shown that human induced-pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) cultured in a three-dimensional (3D) micro-environment exhibit superior physiological characteristics compared with their two-dimensional (2D) counterparts. These 3D cultured hiPSC-CMs have been used for drug testing as well as cardiac repair applications. However, the fabrication of a cardiac scaffold with optimal biomechanical properties and high biocompatibility remains a challenge. In our study, we fabricated an aligned polycaprolactone (PCL)-Gelatin coaxial nanofiber patch using electrospinning. The structural, chemical, and mechanical properties of the patch were assessed by scanning electron microscopy (SEM), immunocytochemistry (ICC), Fourier-transform infrared spectroscopy (FTIR)-spectroscopy, and tensile testing. hiPSC-CMs were cultured on the aligned coaxial patch for 2 weeks and their viability [lactate dehydrogenase (LDH assay)], morphology (SEM, ICC), and functionality [calcium cycling, multielectrode array (MEA)] were assessed. Furthermore, particle image velocimetry (PIV) and MEA were used to evaluate the cardiotoxicity and physiological functionality of the cells in response to cardiac drugs. Nanofibers patches were comprised of highly aligned core-shell fibers with an average diameter of 578 ± 184 nm. Acellular coaxial patches were significantly stiffer than gelatin alone with an ultimate tensile strength of 0.780 ± 0.098 MPa, but exhibited gelatin-like biocompatibility. Furthermore, hiPSC-CMs cultured on the surface of these aligned coaxial patches (3D cultures) were elongated and rod-shaped with well-organized sarcomeres, as observed by the expression of cardiac troponin-T and α-sarcomeric actinin. Additionally, hiPSC-CMs cultured on these coaxial patches formed a functional syncytium evidenced by the expression of connexin-43 (Cx-43) and synchronous calcium transients. Moreover, MEA analysis showed that the hiPSC-CMs cultured on aligned patches showed an improved response to cardiac drugs like Isoproterenol (ISO), Verapamil (VER), and E4031, compared to the corresponding 2D cultures. Overall, our results demonstrated that an aligned, coaxial 3D cardiac patch can be used for culturing of hiPSC-CMs. These biomimetic cardiac patches could further be used as a potential 3D in vitro model for "clinical trials in a dish" and for in vivo cardiac repair applications for treating myocardial infarction.

8.
J Mol Cell Cardiol ; 47(6): 789-97, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19751739

RESUMO

During cardiac arrest (CA), myocardial perfusion is solely dependent on cardiopulmonary resuscitation (CPR) although closed-chest compressions only provide about 10-20% of normal myocardial perfusion. The study was conducted in a whole animal CPR model to determine whether CPR-generated oxygen delivery preserves or worsens mitochondrial function. Male Sprague-Dawley rats (400-450 g) were randomly divided into four groups: (1) BL (instrumentation only, no cardiac arrest), (2) CA(15) (15 min cardiac arrest without CPR), (3) CA(25) (25 min cardiac arrest without CPR) and (4) CPR (15 min cardiac arrest, followed by 10 min CPR). The differences between groups were evaluated by measuring mitochondrial respiration, electron transport chain (ETC) complex activities and mitochondrial ultrastructure by transmission electron microscopy (TEM). The CA(25) group had the greatest impairment of mitochondrial respiration and ETC complex activities (I-III). In contrast, the CPR group was not different from the CA(15) group regarding all measures of mitochondrial function. Complex I was more susceptible to ischemic injury than the other complexes and was the major determinant of mitochondrial dysfunction. Observations of mitochondrial ultrastructure by TEM were compatible with the biochemical results. The findings suggest that, despite low blood flow and oxygen delivery, CPR is able to preserve heart mitochondrial function and viability during ongoing global ischemia. Preservation of complex I activity and mitochondrial function during cardiac arrest may be an important mechanism underlying the beneficial effects of CPR which have been shown in clinical studies.


Assuntos
Reanimação Cardiopulmonar , Parada Cardíaca/fisiopatologia , Mitocôndrias Cardíacas/metabolismo , Animais , Western Blotting , Respiração Celular , Citocromos a/metabolismo , Densitometria , Transporte de Elétrons , Parada Cardíaca/patologia , Masculino , Mitocôndrias Cardíacas/ultraestrutura , Ratos , Ratos Sprague-Dawley
9.
Nanomaterials (Basel) ; 9(7)2019 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-31330782

RESUMO

Coronary heart disease (CHD) is the leading cause of death in the Unites States and globally. The administration of growth factors to preserve cardiac function after myocardial infarction (MI) is currently being explored. Basic fibroblast growth factor (bFGF), a potent angiogenic factor has poor clinical efficacy due to its short biological half-life and low plasma stability. The goal of this study was to develop bFGF-loaded polycaprolactone (PCL) microspheres for sustained release of bFGF and to evaluate its angiogenic potential. The bFGF-PCL microspheres (bFGF-PCL-MS) were fabricated using the emulsion solvent-evaporation method and found to have spherical morphology with a mean size of 4.21 ± 1.28 µm. In vitro bFGF release studies showed a controlled release for up to 30 days. Treatment of HUVECs with bFGF-PCL-MS in vitro enhanced their cell proliferation and migration properties when compared to the untreated control group. Treatment of HUVECs with release media from bFGF-PCL-MS also significantly increased expression of angiogenic genes (bFGF and VEGFA) as compared to untreated cells. The in vivo angiogenic potential of these bFGF-PCL-MS was further confirmed in rats using a Matrigel plug assay with subsequent immunohistochemical staining showing increased expression of angiogenic markers. Overall, bFGF-PCL-MS could serve as a potential angiogenic agent to promote cell survival and angiogenesis following an acute myocardial infarction.

10.
Sci Rep ; 9(1): 13188, 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31515494

RESUMO

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been developed for cardiac cell transplantation studies more than a decade ago. In order to establish the hiPSC-CM-based platform as an autologous source for cardiac repair and drug toxicity, it is vital to understand the functionality of cardiomyocytes. Therefore, the goal of this study was to assess functional physiology, ultrastructural morphology, gene expression, and microRNA (miRNA) profiling at Wk-1, Wk-2 & Wk-4 in hiPSC-CMs in vitro. Functional assessment of hiPSC-CMs was determined by multielectrode array (MEA), Ca2+ cycling and particle image velocimetry (PIV). Results demonstrated that Wk-4 cardiomyocytes showed enhanced synchronization and maturation as compared to Wk-1 & Wk-2. Furthermore, ultrastructural morphology of Wk-4 cardiomyocytes closely mimicked the non-failing (NF) adult human heart. Additionally, modulation of cardiac genes, cell cycle genes, and pluripotency markers were analyzed by real-time PCR and compared with NF human heart. Increasing expression of fatty acid oxidation enzymes at Wk-4 supported the switching to lipid metabolism. Differential regulation of 12 miRNAs was observed in Wk-1 vs Wk-4 cardiomyocytes. Overall, this study demonstrated that Wk-4 hiPSC-CMs showed improved functional, metabolic and ultrastructural maturation, which could play a crucial role in optimizing timing for cell transplantation studies and drug screening.


Assuntos
Diferenciação Celular , Perfilação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/metabolismo , MicroRNAs/biossíntese , Miócitos Cardíacos/metabolismo , Linhagem Celular , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , MicroRNAs/genética , Miócitos Cardíacos/citologia
11.
Resuscitation ; 77(1): 101-10, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18164797

RESUMO

OBJECTIVE: Epinephrine (adrenaline) is widely used as a primary adjuvant for improving perfusion pressure and resuscitation rates during cardiopulmonary resuscitation (CPR). Epinephrine is also associated with significant myocardial dysfunction in the post-resuscitation period. We tested the hypothesis that the cardiac effects of epinephrine vary according to the duration of cardiac arrest. METHODS AND MATERIALS: Cardiac arrest (CA) was induced in Sprague-Dawley rats with an IV bolus of KCl (40 microg/g). Three series of experiments were performed with CPR begun after 2, 4, or 6 min of cardiac arrest. Epinephrine (0.01 mg/kg) IV or placebo was given immediately in the 2 and 4 min CA groups. In the 6 min group, CPR was started after 6 min CA and epinephrine was given at 15 min if no return of spontaneous circulation (ROSC) occurred. Time to ROSC was recorded in all groups. Cardiac function was determined with trans-thoracic echocardiography at baseline, 5, 30 and 60 min after ROSC. RESULTS: After 2 min CA, 8/8 (100%) placebo animals and 8/8 (100%) epinephrine animals attained ROSC. Cardiac index was significantly increased during the first 60 min in the epinephrine group compared with the placebo group (p<0.01). After 4 min of cardiac arrest, 14/29 (48%) placebo animals and 14/16 (88%) epinephrine animals attained ROSC (p<0.01). Cardiac index after ROSC returned to baseline in both groups, although tended to be lower in the epinephrine group. After 6 min CA, 10/31 (32%) animals attained ROSC without epinephrine and 17/21 (81%) animals with epinephrine (p<0.01). Post-ROSC depression of cardiac index was greatest in the epinephrine group (p<0.05). CONCLUSIONS: As the duration of cardiac arrest increases, a paradoxical myocardial epinephrine response develops, in which epinephrine becomes increasingly more important to attain ROSC, but is increasingly associated with post-ROSC myocardial depression.


Assuntos
Agonistas Adrenérgicos/farmacologia , Epinefrina/farmacologia , Parada Cardíaca/tratamento farmacológico , Análise de Variância , Animais , Ecocardiografia , Parada Cardíaca/diagnóstico por imagem , Ratos , Ratos Sprague-Dawley , Estatísticas não Paramétricas , Fatores de Tempo
12.
Front Physiol ; 9: 1794, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30618806

RESUMO

Although cell survival post-transplantation is very low, emerging evidence using stem cell therapy for myocardial repair points toward a primary role of paracrine signaling mechanisms as the basis for improved cardiac function, decreased fibrosis, and increased angiogenesis. Recent studies have demonstrated that extracellular vesicles (EVs) such as exosomes secreted by stem cells stimulate angiogenesis, provide cytoprotection, and modulate apoptosis. However, the angiogenic potential of EVs secreted from human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM), a terminally differentiated cell type, has not been elucidated yet. Therefore, the main objective of this study is to isolate, characterize, and evaluate the in vitro angiogenic potential of EVs collected from hiPSC-CM conditioned media. The hiPSC-CM were cultured for 2 weeks and EVs were isolated from cell culture medium. Isolated EVs were characterized by transmission electron microscopy (TEM), nanoparticle tracking analysis, and immunoblotting. Furthermore, the angiogenic potential of these EVs was evaluated by tube formation, wound-healing, and cell-proliferation assays in bovine aortic endothelial cells (BAEC). In addition, gene expression levels of growth factors was evaluated in hiPSC-derived endothelial cells (hiPSC-EC) treated with hiPSC-CM-derived EV (CM-EVs) to assess their role in promoting angiogenesis. TEM imaging of CM-EVs showed a presence of a double-membrane bound structure, which is a characteristic of EV. Nanoparticle tracking analysis further confirmed the size and shape of the secreted particles to be consistent with EVs. Furthermore, EV-specific markers (CD63 and HSP70) were enriched in these particles as illustrated by immunoblotting. Most importantly, BAEC treated with 100 µg/ml of CM-EVs showed significant increases in tube formation, wound closure, and cell proliferation as compared to control (no-EVs). Finally, treatment of hiPSC-EC with CM-EVs induced increased expression of pro-angiogenic growth factors by the endothelial cells. Overall, our results demonstrated that EVs isolated from hiPSC-CM enhance angiogenesis in endothelial cells. This acellular/cell-free approach constitutes a potential translational therapeutic to induce angiogenesis in patients with myocardial infarction.

13.
Antioxid Redox Signal ; 9(8): 1193-206, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17571958

RESUMO

Myocardial function is dependent on a constant supply of oxygen from the coronary circulation. A reduction of oxygen supply due to coronary obstruction results in myocardial ischemia, which leads to cardiac dysfunction. Reperfusion of the ischemic myocardium is required for tissue survival. Thrombolytic therapy, coronary artery bypass surgery and coronary angioplasty are some of the treatments available for the restoration of blood flow to the ischemic myocardium. However, the restoration of blood flow may also lead to reperfusion injury, resulting in myocyte death. Thus, any imbalance between oxygen supply and metabolic demand leads to functional, metabolic, morphologic, and electrophysiologic alterations, causing cell death. Myocardial ischemia reperfusion (IR) injury is a multifactorial process that is mediated by oxygen free radicals, neutrophil activation and infiltration, calcium overload, and apoptosis. Controlled reperfusion of the ischemic myocardium has been advocated to prevent the IR injury. Studies have shown that reperfusion injury and postischemic cardiac function are related to the quantity and delivery of oxygen during reperfusion. Substantial evidence suggests that controlled reoxygenation may ameliorate postischemic organ dysfunction. In this review, we discuss the role of oxygenation during reperfusion and subsequent biochemical and pathologic alterations in reperfused myocardium and recovery of heart function.


Assuntos
Miocárdio/patologia , Oxigênio/metabolismo , Animais , Apoptose , Radicais Livres , Humanos , Hipóxia , Sistema de Sinalização das MAP Quinases , Espectroscopia de Ressonância Magnética , Isquemia Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica , Óxido Nítrico/metabolismo , Oxigenoterapia , Traumatismo por Reperfusão , Fatores de Tempo
14.
Resuscitation ; 74(3): 508-15, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17418932

RESUMO

AIM OF STUDY: Previous reports note an increase in both reactive oxygen species (ROS) and nitric oxide (*NO) at the onset of myocardial reperfusion. We tested the hypothesis that inhibition of *NO or ROS production at the time of reperfusion improves recovery of post-ischemic myocardial function. METHODS AND MATERIALS: Isolated rat hearts were perfused with temperature controlled (37.4 degrees C) modified Krebs Henseleit buffer solution at 85 mm Hg. Following 20 min of global ischemia, hearts were reperfused for the first 10 min with: (1) standard buffer (control), (2) buffer with a NOS inhibitor, N-nitro-L-arginine methyl ester (L-NAME), (3) buffer with superoxide dismutase (SOD) or (4) buffer with N-morpholinosydnonimine hydrochloride (SIN-1), a peroxynitrite generator. Tissue O(2) and *NO were continuously measured with thin electrochemical probes embedded in the wall of the LV. ROS was measured with the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) (40 mM). LV contractile function was continuously monitored. RESULTS: Recovery of LV contractile function was significantly improved in hearts initially reperfused with L-NAME and SOD and significantly depressed in hearts reperfused with SIN-1 compared with control (p<0.01, n=5-8 per group). DMPO-adduct during reperfusion (measure of ROS) was significantly decreased with SOD (p<0.001 versus L-NAME and Control, n=4 per group) and unchanged with L-NAME and SIN-1 compared with Control. With L-NAME, tissue *NO and PO(2) were significantly decreased, independent of coronary flow, during reperfusion compared with control and SIN-1. CONCLUSIONS: Inhibition of O(2)*(-) or *NO at the time of reperfusion improves early reperfusion LV function and alters tissue oxygen tension. In contrast to pre-ischemic treatments, intervention to reduce peroxynitrite generation at the onset of reperfusion can effectively improve post-ischemic myocardial recovery.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Sequestradores de Radicais Livres/uso terapêutico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Óxido Nítrico/antagonistas & inibidores , Ácido Peroxinitroso/antagonistas & inibidores , Espécies Reativas de Oxigênio/antagonistas & inibidores , Função Ventricular Esquerda/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Masculino , Molsidomina/análogos & derivados , Molsidomina/uso terapêutico , Contração Miocárdica/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/metabolismo , NG-Nitroarginina Metil Éster/uso terapêutico , Consumo de Oxigênio/efeitos dos fármacos , Ácido Peroxinitroso/metabolismo , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Superóxido Dismutase/uso terapêutico , Resultado do Tratamento , Função Ventricular Esquerda/fisiologia
15.
Front Cardiovasc Med ; 4: 22, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28484701

RESUMO

Mitogen-activated protein kinases (MAPKs) signaling cascades regulate several cellular functions, including differentiation, proliferation, survival, and apoptosis. The duration and magnitude of phosphorylation of these MAPKs are decisive determinants of their physiological functions. Dual-specificity phosphatases exert kinetic control over these signaling cascades. Previously, we demonstrated that DUSP4-/- hearts sustain a larger infarct and have poor functional recovery, when isolated hearts were subjected to ischemia/reperfusion. Uncontrolled p38 activation and upregulation of Nox4 expression are the main effectors for this functional alteration. Here, dual-specificity phosphatase 4 (DUSP4) overexpression in endothelial cells was used to investigate the role of DUSP4 on the modulation of reactive oxygen species (ROS) generation and vascular function, when cells were subjected to hypoxia/reoxygenation (H/R) insult. Immunostaining with cleaved caspase-3 revealed that DUSP4 overexpression prevents caspase-3 activation and apoptosis after H/R. The beneficial effects occur via modulating p38 activity, increased NO bioavailability, and reduced oxidative stress. More importantly, DUSP4 overexpression upregulates eNOS protein expression (1.62 ± 0.33 versus 0.65 ± 0.16) during H/R-induced stress. NO is a critical small molecule involved in regulating vascular tone, vascular growth, platelet aggregation, and modulation of inflammation. The level of NO generation determined using DAF-2 fluorescence demonstrated that DUSP4 overexpression augments NO production and thus improves vascular function. The level of superoxide generated from cells after being subjected to H/R was determined using dihydroethidium-HPLC method. The results suggested that DUSP4 overexpression in cells decreases H/R-induced superoxide generation (1.56 ± 0.14 versus 1.19 ± 0.05) and thus reduces oxidant stress. This also correlates with the reduction in the total protein S-glutathionylation, an indicator of protein oxidation. These results further support our hypothesis that DUSP4 is an antioxidant gene and a key phosphatase in modulating MAPKs, especially p38, during oxidative stress, which regulates ROS generation and eNOS expression and thus protects against oxidant-induced injury or apoptosis. Overall, DUSP4 may serve as an excellent molecular target for the treatment of ischemic heart disease.

16.
Stem Cells Int ; 2017: 5785436, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163642

RESUMO

Stem cell transplantation therapy is a promising adjunct for regenerating damaged heart tissue; however, only modest improvements in cardiac function have been observed due to poor survival of transplanted cells in the ischemic heart. Therefore, there remains an unmet need for therapies that can aid in attenuating cardiac damage. Recent studies have demonstrated that exosomes released by stem cells could serve as a potential cell-free therapeutic for cardiac repair. These exosomes/nanoshuttles, once thought to be merely a method of waste disposal, have been shown to play a crucial role in physiological functions including short- and long-distance intercellular communication. In this review, we have summarized studies demonstrating the potential role of exosomes in improving cardiac function, attenuating cardiac fibrosis, stimulating angiogenesis, and modulating miRNA expression. Furthermore, exosomes carry an important cargo of miRNAs and proteins that could play an important role as a diagnostic marker for cardiovascular disease post-myocardial infarction. Although there is promising evidence from preclinical studies that exosomes released by stem cells could serve as a potential cell-free therapeutic for myocardial repair, there are several challenges that need to be addressed before exosomes could be fully utilized as off-the-shelf therapeutics for cardiac repair.

17.
Ann Emerg Med ; 47(3): 272-7, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16492495

RESUMO

STUDY OBJECTIVE: Pralidoxime is indicated to treat patients poisoned with nerve agents. It is available in intravenous formulation for more seriously ill hospitalized patients and intramuscular formulation for field treatment and less seriously ill patients. Our study describes a method to convert the intramuscular formulation for intravenous use and determines the stability and sterility of the resulting formulation over time and under various environmental conditions. METHODS: An inventory was taken of all intravenous (Protopam) and intramuscular (Mark I Autoinjector kits) pralidoxime available in Franklin County, Ohio hospitals, and out-of-hospital stockpiles. A method was devised to safely convert the intramuscular pralidoxime to an intravenous formulation, which was then tested for stability and sterility under a variety of environmental temperatures over time. RESULTS: In Franklin County, Ohio (population 1.1 million), the 10 acute care hospitals and out-of-hospital community have 36 g of intravenous pralidoxime and 4,398 g (7,270 Mark I kits) of intramuscular pralidoxime. The reformulated pralidoxime retained greater than 90% stability and remained sterile at all environmental temperatures through day 28. CONCLUSION: Available pralidoxime in Franklin County is predominantly in the intramuscular preparation. Conversion of intramuscular to intravenous pralidoxime results in a stable and sterile solution for up to 28 days under a variety of environmental conditions and should be considered in a mass casualty situation in which additional intravenous supplies are needed.


Assuntos
Antídotos/farmacologia , Antídotos/provisão & distribuição , Terrorismo Químico/prevenção & controle , Substâncias para a Guerra Química/intoxicação , Compostos de Pralidoxima/farmacologia , Compostos de Pralidoxima/provisão & distribuição , Composição de Medicamentos/métodos , Contaminação de Medicamentos , Estabilidade de Medicamentos , Humanos , Infusões Intravenosas/instrumentação , Injeções Intramusculares/instrumentação , Fármacos do Sistema Nervoso Periférico/intoxicação , Intoxicação/prevenção & controle
18.
Life Sci ; 153: 124-31, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-27091653

RESUMO

Heart disease represents the leading cause of death among Americans. There is currently no clinical treatment to regenerate viable myocardium following myocardial infarction, and patients may suffer progressive deterioration and decreased myocardial function from the effects of remodeling of the necrotic myocardium. New therapeutic strategies hold promise for patients who suffer from ischemic heart disease by directly addressing the restoration of functional myocardium following death of cardiomyocytes. Therapeutic stem cell transplantation has shown modest benefit in clinical human trials with decreased fibrosis and increased functional myocardium. Moreover, autologous transplantation holds the potential to implement these therapies while avoiding the immunomodulation concerns of heart transplantation. Despite these benefits, stem cell therapy has been characterized by poor survival and low engraftment of injected stem cells. The hypoxic tissue environment of the ischemic/infracting myocardium impedes stem cell survival and engraftment in myocardial tissue. Hypoxic preconditioning has been suggested as a viable strategy to increase hypoxic tolerance of stem cells. A number of in vivo and in vitro studies have demonstrated improved stem cell viability by altering stem cell secretion of protein signals and up-regulation of numerous paracrine signaling pathways that affect inflammatory, survival, and angiogenic signaling pathways. This review will discuss both the mechanisms of hypoxic preconditioning as well as the effects of hypoxic preconditioning in different cell and animal models, examining the pitfalls in current research and the next steps into potentially implementing this methodology in clinical research trials.


Assuntos
Sobrevivência Celular , Miocárdio/citologia , Oxigênio/metabolismo , Células-Tronco/citologia , Animais , Humanos
19.
Free Radic Biol Med ; 89: 170-81, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26184564

RESUMO

Over-activation of p38 is implicated in many cardiovascular diseases (CVDs), including myocardial infarction, hypertrophy, heart failure, and ischemic heart disease. Numerous therapeutic interventions for CVDs have been directed toward the inhibition of the p38 mitogen-activated protein kinase activation that contributes to the detrimental effect after ischemia/reperfusion (I/R) injuries. However, the efficacy of these treatments is far from ideal, as they lack specificity and are associated with high toxicity. Previously, we demonstrated that N-acetyl cysteine (NAC) pretreatment up-regulates DUSP4 expression in endothelial cells, regulating p38 and ERK1/2 activities, and thus providing a protective effect against oxidative stress. Here, endothelial cells under hypoxia/reoxygenation (H/R) insult and isolated heart I/R injury were used to investigate the role of DUSP4 in the modulation of the p38 pathway. In rat endothelial cells, DUSP4 is time-dependently degraded by H/R (0.25 ± 0.07-fold change of control after 2h H/R). Its degradation is closely associated with hyperphosphorylation of p38 (2.1 ± 0.36-fold change) and cell apoptosis, as indicated by the increase in cells immunopositive for cleaved caspase-3 (12.59 ± 3.38%) or TUNEL labeling (29.46 ± 3.75%). The inhibition of p38 kinase activity with 20 µM SB203580 during H/R prevents H/R-induced apoptosis, assessed via TUNEL (12.99 ± 1.89%). Conversely, DUSP4 gene silencing in endothelial cells augments their sensitivity to H/R-induced apoptosis (45.81 ± 5.23%). This sensitivity is diminished via the inhibition of p38 activity (total apoptotic cells drop to 17.47 ± 1.45%). Interestingly, DUSP4 gene silencing contributes to the increase in superoxide generation from cells. Isolated Langendorff-perfused mouse hearts were subjected to global I/R injury. DUSP4(-/-) hearts had significantly larger infarct size than WT. The increase in I/R-induced infarct in DUSP4(-/-) mice significantly correlates with reduced functional recovery (assessed by RPP%, LVDP%, HR%, and dP/dtmax) as well as lower CF% and a higher initial LVEDP. From immunoblotting analysis, it is evident that p38 is significantly overactivated in DUSP4(-/-) mice after I/R injury. The activation of cleaved caspase-3 is seen in both WT and DUSP4(-/-) I/R hearts. Infusion of a p38 inhibitor prior to ischemia and during the reperfusion improves both WT and DUSP4(-/-) cardiac function. Therefore, the identification of p38 kinase modulation by DUSP4 provides a novel therapeutic target for oxidant-induced diseases, especially myocardial infarction.


Assuntos
Aorta/fisiologia , Endotélio Vascular/fisiologia , Coração/fisiopatologia , Isquemia Miocárdica/fisiopatologia , Estresse Oxidativo , Proteínas Tirosina Fosfatases/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Aorta/citologia , Apoptose , Western Blotting , Proliferação de Células , Células Cultivadas , Endotélio Vascular/citologia , Regulação da Expressão Gênica , Técnicas Imunoenzimáticas , Camundongos , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Fosforilação , RNA Mensageiro/genética , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Quinases p38 Ativadas por Mitógeno/genética
20.
PLoS One ; 10(5): e0126338, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25993466

RESUMO

INTRODUCTION: Dilated cardiomyopathy is a major cause of progressive heart failure. Utilization of stem cell therapy offers a potential means of regenerating viable cardiac tissue. However, a major obstacle to stem cell therapy is the delivery and survival of implanted stem cells in the ischemic heart. To address this issue, we have developed a biomimetic aligned nanofibrous cardiac patch and characterized the alignment and function of human inducible pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) cultured on this cardiac patch. This hiPSC-CMs seeded patch was compared with hiPSC-CMs cultured on standard flat cell culture plates. METHODS: hiPSC-CMs were cultured on; 1) a highly aligned polylactide-co-glycolide (PLGA) nanofiber scaffold (~50 microns thick) and 2) on a standard flat culture plate. Scanning electron microscopy (SEM) was used to determine alignment of PLGA nanofibers and orientation of the cells on the respective surfaces. Analysis of gap junctions (Connexin-43) was performed by confocal imaging in both the groups. Calcium cycling and patch-clamp technique were performed to measure calcium transients and electrical coupling properties of cardiomyocytes. RESULTS: SEM demonstrated >90% alignment of the nanofibers in the patch which is similar to the extracellular matrix of decellularized rat myocardium. Confocal imaging of the cardiomyocytes demonstrated symmetrical alignment in the same direction on the aligned nanofiber patch in sharp contrast to the random appearance of cardiomyocytes cultured on a tissue culture plate. The hiPSC-CMs cultured on aligned nanofiber cardiac patches showed more efficient calcium cycling compared with cells cultured on standard flat surface culture plates. Quantification of mRNA with qRT-PCR confirmed that these cardiomyocytes expressed α-actinin, troponin-T and connexin-43 in-vitro. CONCLUSIONS: Overall, our results demonstrated changes in morphology and function of human induced pluripotent derived cardiomyocytes cultured in an anisotropic environment created by an aligned nanofiber patch. In this environment, these cells better approximate normal cardiac tissue compared with cells cultured on flat surface and can serve as the basis for bioengineering of an implantable cardiac patch.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Nanofibras , Potenciais de Ação , Cálcio/metabolismo , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Microscopia Confocal , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Miócitos Cardíacos/metabolismo , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA