RESUMO
Intracellular communication and regulation in brain cells is controlled by the ubiquitous Ca2+ and by redox signalling. Both of these independent signalling systems regulate most of the processes in cells including the cell surviving mechanism or cell death. In physiology Ca2+ can regulate and trigger reactive oxygen species (ROS) production by various enzymes and in mitochondria but ROS could also transmit redox signal to calcium levels via modification of calcium channels or phospholipase activity. Changes in calcium or redox signalling could lead to severe pathology resulting in excitotoxicity or oxidative stress. Interaction of the calcium and ROS is essential to trigger opening of mitochondrial permeability transition pore - the initial step of apoptosis, Ca2+ and ROS-induced oxidative stress involved in necrosis and ferroptosis. Here we review the role of redox signalling and Ca2+ in cytosol and mitochondria in the physiology of brain cells - neurons and astrocytes and how this integration can lead to pathology, including ischaemia injury and neurodegeneration.
Assuntos
Encéfalo , Sinalização do Cálcio , Cálcio , Mitocôndrias , Neurônios , Estresse Oxidativo , Espécies Reativas de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Humanos , Mitocôndrias/metabolismo , Encéfalo/metabolismo , Animais , Cálcio/metabolismo , Neurônios/metabolismo , Astrócitos/metabolismo , Oxirredução , Apoptose , Poro de Transição de Permeabilidade Mitocondrial/metabolismoRESUMO
Ferroptosis, triggered by discoordination of iron, thiols and lipids, leads to the accumulation of 15-hydroperoxy (Hp)-arachidonoyl-phosphatidylethanolamine (15-HpETE-PE), generated by complexes of 15-lipoxygenase (15-LOX) and a scaffold protein, phosphatidylethanolamine (PE)-binding protein (PEBP)1. As the Ca2+-independent phospholipase A2ß (iPLA2ß, PLA2G6 or PNPLA9 gene) can preferentially hydrolyze peroxidized phospholipids, it may eliminate the ferroptotic 15-HpETE-PE death signal. Here, we demonstrate that by hydrolyzing 15-HpETE-PE, iPLA2ß averts ferroptosis, whereas its genetic or pharmacological inactivation sensitizes cells to ferroptosis. Given that PLA2G6 mutations relate to neurodegeneration, we examined fibroblasts from a patient with a Parkinson's disease (PD)-associated mutation (fPDR747W) and found selectively decreased 15-HpETE-PE-hydrolyzing activity, 15-HpETE-PE accumulation and elevated sensitivity to ferroptosis. CRISPR-Cas9-engineered Pnpla9R748W/R748W mice exhibited progressive parkinsonian motor deficits and 15-HpETE-PE accumulation. Elevated 15-HpETE-PE levels were also detected in midbrains of rotenone-infused parkinsonian rats and α-synuclein-mutant SncaA53T mice, with decreased iPLA2ß expression and a PD-relevant phenotype. Thus, iPLA2ß is a new ferroptosis regulator, and its mutations may be implicated in PD pathogenesis.
Assuntos
Ferroptose/fisiologia , Fosfolipases A2 do Grupo VI/metabolismo , Animais , Araquidonato 15-Lipoxigenase/metabolismo , Modelos Animais de Doenças , Feminino , Fosfolipases A2 do Grupo VI/fisiologia , Humanos , Ferro/metabolismo , Leucotrienos/metabolismo , Metabolismo dos Lipídeos/fisiologia , Peróxidos Lipídicos/metabolismo , Lipídeos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Doença de Parkinson/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Fosfolipases/metabolismo , Fosfolipídeos/metabolismo , Ratos , Ratos Endogâmicos LewRESUMO
Aging is a physiological process that leads to a higher risk for the most devastating diseases. There are a number of theories of human aging proposed, and many of them are directly or indirectly linked to mitochondria. Here, we used mesenchymal stem cells (MSCs) from young and older donors to study age-related changes in mitochondrial metabolism. We have found that aging in MSCs is associated with a decrease in mitochondrial membrane potential and lower NADH levels in mitochondria. Mitochondrial DNA content is higher in aged MSCs, but the overall mitochondrial mass is decreased due to increased rates of mitophagy. Despite the higher level of ATP in aged cells, a higher rate of ATP consumption renders them more vulnerable to energy deprivation compared to younger cells. Changes in mitochondrial metabolism in aged MSCs activate the overproduction of reactive oxygen species in mitochondria which is compensated by a higher level of the endogenous antioxidant glutathione. Thus, energy metabolism and redox state are the drivers for the aging of MSCs/mesenchymal stromal cells.
Assuntos
Células-Tronco Mesenquimais , Trifosfato de Adenosina/metabolismo , Idoso , Humanos , Potencial da Membrana Mitocondrial , Células-Tronco Mesenquimais/metabolismo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismoRESUMO
Mitochondrial diseases (MD) are a heterogeneous group of multisystem disorders involving metabolic errors. MD are characterized by extremely heterogeneous symptoms, ranging from organ-specific to multisystem dysfunction with different clinical courses. Most primary MD are autosomal recessive but maternal inheritance (from mtDNA), autosomal dominant, and X-linked inheritance is also known. Mitochondria are unique energy-generating cellular organelles designed to survive and contain their own unique genetic coding material, a circular mtDNA fragment of approximately 16,000 base pairs. The mitochondrial genetic system incorporates closely interacting bi-genomic factors encoded by the nuclear and mitochondrial genomes. Understanding the dynamics of mitochondrial genetics supporting mitochondrial biogenesis is especially important for the development of strategies for the treatment of rare and difficult-to-diagnose diseases. Gene therapy is one of the methods for correcting mitochondrial disorders.
Assuntos
Doenças Mitocondriais , Humanos , Doenças Mitocondriais/genética , Doenças Mitocondriais/terapia , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Terapia Genética , Padrões de HerançaRESUMO
The world's population aging progression renders age-related neurodegenerative diseases to be one of the biggest unsolved problems of modern society. Despite the progress in studying the development of pathology, finding ways for modifying neurodegenerative disorders remains a high priority. One common feature of neurodegenerative diseases is mitochondrial dysfunction and overproduction of reactive oxygen species, resulting in oxidative stress. Although lipid peroxidation is one of the markers for oxidative stress, it also plays an important role in cell physiology, including activation of phospholipases and stimulation of signaling cascades. Excessive lipid peroxidation is a hallmark for most neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and many other neurological conditions. The products of lipid peroxidation have been shown to be the trigger for necrotic, apoptotic, and more specifically for oxidative stress-related, that is, ferroptosis and neuronal cell death. Here we discuss the involvement of lipid peroxidation in the mechanism of neuronal loss and some novel therapeutic directions to oppose it.
Assuntos
Mitocôndrias , Doenças Neurodegenerativas , Humanos , Peroxidação de Lipídeos , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismoRESUMO
The receptor for advanced glycation end products (RAGE) is a signal receptor first shown to be activated by advanced glycation end products, but also by a variety of signal molecules, including pathological advanced oxidation protein products and ß-amyloid. However, most of the RAGE activators have multiple intracellular targets, making it difficult to unravel the exact pathway of RAGE activation. Here, we show that the cell-impermeable RAGE fragment sequence (60-76) of the V-domain of the receptor is able to activate RAGE present on the plasma membrane of neurons and, preferentially, astrocytes. This leads to the exocytosis of vesicular glutamate transporter vesicles and the release of glutamate from astrocytes, which stimulate NMDA and AMPA/kainate receptors, resulting in calcium signals predominantly in neurons. Thus, we show a specific mechanism of RAGE activation by the RAGE fragment and propose a mechanism by which RAGE activation can contribute to the neuronal-astrocytic communication in physiology and pathology.
Assuntos
Astrócitos/metabolismo , Sinalização do Cálcio , Ácido Glutâmico/metabolismo , Neurônios/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Espaço Extracelular/metabolismo , Humanos , Neurônios/efeitos dos fármacos , Peptídeos/farmacologia , Domínios Proteicos , Coelhos , Ratos Sprague-Dawley , Receptor para Produtos Finais de Glicação Avançada/química , Receptores de AMPA/metabolismo , Receptores de Glutamato/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismoRESUMO
Brain is not homogenous and neurons from various brain regions are known to have different vulnerabilities to mitochondrial mutations and mitochondrial toxins. However, it is not clear if this vulnerability is connected to different energy metabolism in specific brain regions. Here, using live-cell imaging, we compared mitochondrial membrane potential and nicotinamide adenine dinucleotide (NADH) redox balance in acute rat brain slices in different brain regions and further detailed the mitochondrial metabolism in primary neurons and astrocytes from rat cortex, midbrain and cerebellum. We have found that mitochondrial membrane potential is higher in brain slices from the hippocampus and brain stem. In primary co-cultures, mitochondrial membrane potential in astrocytes was lower than in neurons, whereas in midbrain cells it was higher than in cortex and cerebellum. The rate of NADH production and mitochondrial NADH pool were highest in acute slices from midbrain and midbrain primary neurons and astrocytes. Although the level of adenosine tri phosphate (ATP) was similar among primary neurons and astrocytes from cortex, midbrain and cerebellum, the rate of ATP consumption was highest in midbrain cells that lead to faster neuronal and astrocytic collapse in response to inhibitors of ATP production. Thus, midbrain neurons and astrocytes have a higher metabolic rate and ATP consumption that makes them more vulnerable to energy deprivation.
Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Metabolismo Energético/fisiologia , Mitocôndrias/fisiologia , Neurônios/metabolismo , Animais , Masculino , Potencial da Membrana Mitocondrial/fisiologia , Técnicas de Cultura de Órgãos , Ratos , Ratos WistarRESUMO
Inorganic polyphosphate (polyP) is a polymer present in all living organisms. Although polyP is found to be involved in a variety of functions in cells of higher organisms, the enzyme responsible for polyP production and consumption has not yet been identified. Here, we studied the effect of polyP on mitochondrial respiration, oxidative phosphorylation and activity of F0F1-ATPsynthase. We have found that polyP activates mitochondrial respiration which does not coupled with ATP production (V2) but inhibits ADP-dependent respiration (V3). Moreover, PolyP can stimulate F0F1-ATPase activity in the presence of ATP and, importantly, can be hydrolyzed in this enzyme instead of ATP. Furthermore, PolyP can be produced in mitochondria in the presence of substrates for respiration and phosphate by the F0F1-ATPsynthase. Thus, polyP is an energy molecule in mammalian cells which can be produced and hydrolyzed in the mitochondrial F0F1-ATPsynthase.
Assuntos
Mitocôndrias/enzimologia , Polifosfatos/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Hidrólise , Mamíferos/genética , Mamíferos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Ratos , Ratos Sprague-DawleyRESUMO
Glutamate is one of the most important neurotransmitters in the process of signal transduction in the CNS. Excessive amounts of this neurotransmitter lead to glutamate excitotoxicity, which is accountable for neuronal death in acute neurological disorders, including stroke and trauma, and in neurodegenerative diseases. Inorganic polyphosphate (PolyP) plays multiple roles in the mammalian brain, including function as a calcium-dependent gliotransmitter mediating communication between astrocytes, while its role in the regulation of neuronal activity is unknown. Here we studied the effect of PolyP on glutamate-induced calcium signal in primary rat neurons in both physiological and pathological conditions. We found that preincubation of primary neurons with PolyP reduced glutamate-induced and AMPA-induced but not the NMDA-induced calcium signal. However, in rat hippocampal acute slices, PolyP reduced ion flux through NMDA and AMPA receptors in native neurons. The effect of PolyP on glutamate and specifically on the AMPA receptors was dependent on the presence of P2Y1 but not of P2X receptor inhibitors and also could be mimicked by P2Y1 agonist 2MeSADP. Preincubation of cortical neurons with PolyP significantly reduced the initial calcium peak as well as the number of neurons with delayed calcium deregulation in response to high concentrations of glutamate and resulted in protection of neurons against glutamate-induced cell death. As a result, activation of P2Y1 receptors by PolyP reduced calcium signal acting through AMPA receptors, thus protecting neurons against glutamate excitotoxicity by reduction of the calcium overload and restoration of mitochondrial function.SIGNIFICANCE STATEMENT One of the oldest polymers in the evolution of living matter is the inorganic polyphosphate (PolyP). It is shown to play a role of gliotransmitter in the brain; however, the role of polyphosphate in neuronal signaling is not clear. Here we demonstrate that inorganic polyphosphate is able to reduce calcium signaling induced by physiological or high concentrations of glutamate. The effect of polyphosphate on glutamate-induced calcium signal in neurons is due to the effect of this polymer on the AMPA receptors. The effect of PolyP on glutamate-induced and AMPA-induced calcium signal is dependent on P2Y receptor antagonist. The ability of PolyP to restrict the glutamate-induced calcium signal lies in the basis of its protection of neurons against glutamate excitotoxicity.
Assuntos
Ácido Glutâmico/metabolismo , Neurônios/metabolismo , Polifosfatos/metabolismo , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Purinérgicos P2Y1/metabolismo , Animais , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Células Cultivadas , Feminino , Ácido Glutâmico/toxicidade , Masculino , Neurônios/efeitos dos fármacos , Polifosfatos/farmacologia , Ratos , Ratos Sprague-DawleyRESUMO
Mitochondria control vitally important functions in cells, including energy production, cell signalling and regulation of cell death. Considering this, any alteration in mitochondrial metabolism would lead to cellular dysfunction and the development of a disease. A large proportion of disorders associated with mitochondria are induced by mutations or chemical inhibition of the mitochondrial complex I - the entry point to the electron transport chain. Subunits of the enzyme NADH: ubiquinone oxidoreductase, are encoded by both nuclear and mitochondrial DNA and mutations in these genes lead to cardio and muscular pathologies and diseases of the central nervous system. Despite such a clear involvement of complex I deficiency in numerous disorders, the molecular and cellular mechanisms leading to the development of pathology are not very clear. In this review, we summarise how lack of activity of complex I could differentially change mitochondrial and cellular functions and how these changes could lead to a pathology, following discrete routes.
Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Complexo I de Transporte de Elétrons/genética , Metabolismo Energético , Humanos , Mitocôndrias/metabolismo , Mutação , Doença de Parkinson/metabolismo , Espécies Reativas de Oxigênio/metabolismoRESUMO
Inorganic polyphosphate (polyP) is present in every cell and is highly conserved from primeval times. In the mammalian cells, polyP plays multiple roles including control of cell bioenergetics and signal transduction. In the brain, polyP mediates signaling between astrocytes via activation of purinergic receptors, however, the mechanisms of polyP release remain unknown. Here we report identification of polyP-containing vesicles in cortical astrocytes and the main triggers that evoke vesicular polyP release. In cultured astrocytes, polyP was localized predominantly within the intracellular vesicular compartments which express vesicular nucleotide transporter VNUT (putative ATP-containing vesicles), but not within the compartments expressing vesicular glutamate transporter 2 (VGLUT2). The number of lysosomes which contain polyP was dependent on the conditions of astrocytes. Release of polyP from a proportion of lysosomes could be induced by calcium ionophores. In contrast, polyP release from the VNUT-containing vesicles could be triggered by various physiological stimuli, such as pH changes, polyP induced polyP release and other stimuli which increase [Ca2+ ] i . These data suggest that astrocytes release polyP predominantly via exocytosis from the VNUT-containing vesicles. © 2018 Wiley Periodicals, Inc.
Assuntos
Astrócitos/metabolismo , Lisossomos/metabolismo , Polifosfatos/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Astrócitos/citologia , Cálcio/metabolismo , Células Cultivadas , Córtex Cerebral/metabolismo , Exocitose/fisiologia , Concentração de Íons de Hidrogênio , Espaço Intracelular/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/deficiência , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Proteína Vesicular 2 de Transporte de Glutamato/metabolismoRESUMO
Reports of primary isolated dystonia inherited in an autosomal-recessive (AR) manner, often lumped together as "DYT2 dystonia," have appeared in the scientific literature for several decades, but no genetic cause has been identified to date. Using a combination of homozygosity mapping and whole-exome sequencing in a consanguineous kindred affected by AR isolated dystonia, we identified homozygous mutations in HPCA, a gene encoding a neuronal calcium sensor protein found almost exclusively in the brain and at particularly high levels in the striatum, as the cause of disease in this family. Subsequently, compound-heterozygous mutations in HPCA were also identified in a second independent kindred affected by AR isolated dystonia. Functional studies suggest that hippocalcin might play a role in regulating voltage-dependent calcium channels. The identification of mutations in HPCA as a cause of AR primary isolated dystonia paves the way for further studies to assess whether "DYT2 dystonia" is a genetically homogeneous condition or not.
Assuntos
Distonia/genética , Genes Recessivos/genética , Hipocalcina/genética , Mutação/genética , Encéfalo/metabolismo , Canais de Cálcio/metabolismo , Hipocalcina/metabolismo , Homozigoto , Humanos , LinhagemRESUMO
Aggregation of α-synuclein leads to the formation of oligomeric intermediates that can interact with membranes to form pores. However, it is unknown how this leads to cell toxicity in Parkinson's disease. We investigated the species-specific effects of α-synuclein on Ca(2+) signalling in primary neurons and astrocytes using live neuronal imaging and electrophysiology on artificial membranes. We demonstrate that α-synuclein induces an increase in basal intracellular Ca(2+) in its unfolded monomeric state as well as in its oligomeric state. Electrophysiology of artificial membranes demonstrated that α-synuclein monomers induce irregular ionic currents, whereas α-synuclein oligomers induce rare discrete channel formation events. Despite the ability of monomeric α-synuclein to affect Ca(2+) signalling, it is only the oligomeric form of α-synuclein that induces cell death. Oligomer-induced cell death was abolished by the exclusion of extracellular Ca(2+), which prevented the α-synuclein-induced Ca(2+) dysregulation. The findings of this study confirm that α-synuclein interacts with membranes to affect Ca(2+) signalling in a structure-specific manner and the oligomeric ß-sheet-rich α-synuclein species ultimately leads to Ca(2+) dysregulation and Ca(2+)-dependent cell death.
Assuntos
Astrócitos/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Mutação de Sentido Incorreto , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Dobramento de Proteína , alfa-Sinucleína/metabolismo , Substituição de Aminoácidos , Animais , Astrócitos/patologia , Morte Celular , Células Cultivadas , Neurônios/patologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , Multimerização Proteica/genética , Ratos , Ratos Sprague-Dawley , alfa-Sinucleína/genéticaRESUMO
Misfolded α-synuclein is a key factor in the pathogenesis of Parkinson's disease (PD). However, knowledge about a physiological role for the native, unfolded α-synuclein is limited. Using brains of mice lacking α-, ß-, and γ-synuclein, we report that extracellular monomeric α-synuclein enters neurons and localizes to mitochondria, interacts with ATP synthase subunit α, and modulates ATP synthase function. Using a combination of biochemical, live-cell imaging and mitochondrial respiration analysis, we found that brain mitochondria of α-, ß-, and γ-synuclein knock-out mice are uncoupled, as characterized by increased mitochondrial respiration and reduced mitochondrial membrane potential. Furthermore, synuclein deficiency results in reduced ATP synthase efficiency and lower ATP levels. Exogenous application of low unfolded α-synuclein concentrations is able to increase the ATP synthase activity that rescues the mitochondrial phenotypes observed in synuclein deficiency. Overall, the data suggest that α-synuclein is a previously unrecognized physiological regulator of mitochondrial bioenergetics through its ability to interact with ATP synthase and increase its efficiency. This may be of particular importance in times of stress or PD mutations leading to energy depletion and neuronal cell toxicity. SIGNIFICANCE STATEMENT: Misfolded α-synuclein aggregations in the form of Lewy bodies have been shown to be a pathological hallmark in histological staining of Parkinson's disease (PD) patient brains. It is known that misfolded α-synuclein is a key driver in PD pathogenesis, but the physiological role of unfolded monomeric α-synuclein remains unclear. Using neuronal cocultures and isolated brain mitochondria of α-, ß-, and γ-synuclein knock-out mice and monomeric α-synuclein, this current study shows that α-synuclein in its unfolded monomeric form improves ATP synthase efficiency and mitochondrial function. The ability of monomeric α-synuclein to enhance ATP synthase efficiency under physiological conditions may be of importance when α-synuclein undergoes the misfolding and aggregation reported in PD.
Assuntos
Encéfalo/enzimologia , ATPases Mitocondriais Próton-Translocadoras/metabolismo , alfa-Sinucleína/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Astrócitos/enzimologia , Astrócitos/metabolismo , Células Cultivadas , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , NAD/metabolismo , Consumo de Oxigênio/fisiologia , Resposta a Proteínas não Dobradas/genética , alfa-Sinucleína/genéticaRESUMO
Two of the most devastating neurodegenerative diseases are consequences out of misfolding and aggregation of key proteins-alpha synuclein and beta-amyloid. Although the primary targets for the two proteins are different, they both share a common mechanism that involves formation of pore-like structure on the plasma membrane, consequent dysregulation of calcium homeostasis, mitochondrial dysfunction and oxidative damage. The combined effect of all this factors ultimately leads to neuronal cell death. Whereas beta amyloid acts on the astrocytic plasma membrane, exhibiting a tight dependence to the membrane cholesterol content, alpha-synuclein does not distinguish between type of membrane or cell. Additionally, oligomeric forms of both proteins produce reactive oxygen species through different mechanisms: beta-amyloid through activation of the NADPH oxidase and alpha-synuclein through non-enzymatic way. Finally, both peptides in oligomeric form induce mitochondrial depolarisation through calcium overload and free radical production that ultimately lead to opening of the mitochondrial permeability transition pore and trigger cell death.
Assuntos
Peptídeos beta-Amiloides/metabolismo , Cálcio/metabolismo , Mitocôndrias/metabolismo , alfa-Sinucleína/metabolismo , Radicais Livres/metabolismo , HumanosRESUMO
In terrestrial mammals, the oxygen storage capacity of the CNS is limited, and neuronal function is rapidly impaired if oxygen supply is interrupted even for a short period of time. However, oxygen tension monitored by the peripheral (arterial) chemoreceptors is not sensitive to regional CNS differences in partial pressure of oxygen (PO2 ) that reflect variable levels of neuronal activity or local tissue hypoxia, pointing to the necessity of a functional brain oxygen sensor. This experimental animal (rats and mice) study shows that astrocytes, the most numerous brain glial cells, are sensitive to physiological changes in PO2 . Astrocytes respond to decreases in PO2 a few millimeters of mercury below normal brain oxygenation with elevations in intracellular calcium ([Ca(2+)]i). The hypoxia sensor of astrocytes resides in the mitochondria in which oxygen is consumed. Physiological decrease in PO2 inhibits astroglial mitochondrial respiration, leading to mitochondrial depolarization, production of free radicals, lipid peroxidation, activation of phospholipase C, IP3 receptors, and release of Ca(2+) from the intracellular stores. Hypoxia-induced [Ca(2+)]i increases in astrocytes trigger fusion of vesicular compartments containing ATP. Blockade of astrocytic signaling by overexpression of ATP-degrading enzymes or targeted astrocyte-specific expression of tetanus toxin light chain (to interfere with vesicular release mechanisms) within the brainstem respiratory rhythm-generating circuits reveals the fundamental physiological role of astroglial oxygen sensitivity; in low-oxygen conditions (environmental hypoxia), this mechanism increases breathing activity even in the absence of peripheral chemoreceptor oxygen sensing. These results demonstrate that astrocytes are functionally specialized CNS oxygen sensors tuned for rapid detection of physiological changes in brain oxygenation. Significance statement: Most, if not all, animal cells possess mechanisms that allow them to detect decreases in oxygen availability leading to slow-timescale, adaptive changes in gene expression and cell physiology. To date, only two types of mammalian cells have been demonstrated to be specialized for rapid functional oxygen sensing: glomus cells of the carotid body (peripheral respiratory chemoreceptors) that stimulate breathing when oxygenation of the arterial blood decreases; and pulmonary arterial smooth muscle cells responsible for hypoxic pulmonary vasoconstriction to limit perfusion of poorly ventilated regions of the lungs. Results of the present study suggest that there is another specialized oxygen-sensitive cell type in the body, the astrocyte, that is tuned for rapid detection of physiological changes in brain oxygenation.
Assuntos
Astrócitos/metabolismo , Células Quimiorreceptoras/metabolismo , Oxigênio/metabolismo , Fenômenos Fisiológicos Respiratórios , Animais , Hipóxia Celular/fisiologia , Células Cultivadas , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-DawleyRESUMO
The mechanisms of neurovascular coupling underlying generation of BOLD fMRI signals remain incompletely understood. It has been proposed that release of vasoactive substances by astrocytes couples neuronal activity to changes in cerebrovascular blood flow. However, the role of astrocytes in fMRI responses remains controversial. Astrocytes communicate via release of ATP, and here we tested the hypothesis that purinergic signaling plays a role in the mechanisms underlying fMRI. An established fMRI paradigm was used to trigger BOLD responses in the forepaw region of the somatosensory cortex (SSFP) of an anesthetized rat. Forepaw stimulation induced release of ATP in the SSFP region. To interfere with purinergic signaling by promoting rapid breakdown of the vesicular and/or released ATP, a lentiviral vector was used to express a potent ectonucleotidase, transmembrane prostatic acid phosphatase (TMPAP), in the SSFP region. TMPAP expression had no effect on resting cerebral blood flow, cerebrovascular reactivity, and neuronal responses to sensory stimulation. However, TMPAP catalytic activity markedly reduced the magnitude of BOLD fMRI responses triggered in the SSFP region by forepaw stimulation. Facilitated ATP breakdown could result in accumulation of adenosine. However, blockade of A1 receptors had no effect on BOLD responses and did not reverse the effect of TMPAP. These results suggest that purinergic signaling plays a significant role in generation of BOLD fMRI signals. We hypothesize that astrocytes activated during periods of enhanced neuronal activity release ATP, which propagates astrocytic activation, stimulates release of vasoactive substances and dilation of cerebral vasculature.
Assuntos
Trifosfato de Adenosina/metabolismo , Circulação Cerebrovascular/fisiologia , Imageamento por Ressonância Magnética , Transdução de Sinais , Córtex Somatossensorial/fisiologia , Fosfatase Ácida , Trifosfato de Adenosina/antagonistas & inibidores , Animais , Circulação Cerebrovascular/efeitos dos fármacos , Estimulação Elétrica , Membro Anterior/fisiologia , Neuroimagem Funcional , Masculino , Microinjeções , Proteínas Tirosina Fosfatases/administração & dosagem , Proteínas Tirosina Fosfatases/genética , Antagonistas de Receptores Purinérgicos P1/farmacologia , Ratos , Transdução de Sinais/efeitos dos fármacos , Córtex Somatossensorial/irrigação sanguínea , Córtex Somatossensorial/efeitos dos fármacos , Córtex Somatossensorial/metabolismoRESUMO
BACKGROUND: Nuclear factor (erythroid-derived 2) factor 2 (Nrf2) is a crucial transcription factor mediating protection against oxidants. Nrf2 is negatively regulated by cytoplasmic Kelch-like ECH associated protein 1 (Keap1) thereby providing inducible antioxidant defence. Antioxidant properties of Nrf2 are thought to be mainly exerted by stimulating transcription of antioxidant proteins, whereas its effects on ROS production within the cell are uncertain. METHODS: Live cell imaging and qPCR in brain hippocampal glio-neuronal cultures and explants slice cultures with graded expression of Nrf2, i.e. Nrf2-knockout (Nrf2-KO), wild-type (WT), and Keap1-knockdown (Keap1-KD). RESULTS: We here show that ROS production in Nrf2-KO cells and tissues is increased compared to their WT counterparts. Mitochondrial ROS production is regulated by the Keap1-Nrf2 pathway by controlling mitochondrial bioenergetics. Surprisingly, Keap1-KD cells and tissues also showed higher rates of ROS production when compared to WT, although with a smaller magnitude. Analysis of the mRNA expression levels of the two NOX isoforms implicated in brain pathology showed, that NOX2 is dramatically upregulated under conditions of Nrf2 deficiency, whereas NOX4 is upregulated when Nrf2 is constitutively activated (Keap1-KD) to a degree which paralleled the increases in ROS production. CONCLUSIONS: These observations suggest that the Keap1-Nrf2 pathway regulates both mitochondrial and cytosolic ROS production through NADPH oxidase. GENERAL SIGNIFICANCE: Findings supports a key role of the Keap1-Nrf2 pathway in redox homeostasis within the cell.
Assuntos
Mitocôndrias/metabolismo , NADPH Oxidases/fisiologia , Fator 2 Relacionado a NF-E2/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Citosol/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteína 1 Associada a ECH Semelhante a Kelch , Camundongos , Camundongos PeladosRESUMO
Inorganic polyphosphate (polyP) is a polymer compromised of linearly arranged orthophosphate units that are linked through high-energy phosphoanhydride bonds. The chain length of this polymer varies from five to several thousand orthophosphates. PolyP is distributed in the most of the living organisms and plays multiple functions in mammalian cells, it is important for blood coagulation, cancer, calcium precipitation, immune response and many others. Essential role of polyP is shown for mitochondria, from implication into energy metabolism and mitochondrial calcium handling to activation of permeability transition pore (PTP) and cell death. PolyP is a gliotransmitter which transmits the signal in astrocytes via activation of P2Y1 receptors and stimulation of phospholipase C. PolyP-induced calcium signal in astrocytes can be stimulated by different lengths of this polymer but only long chain polyP induces mitochondrial depolarization by inhibition of respiration and opening of the PTP. It leads to induction of astrocytic cell death which can be prevented by inhibition of PTP with cyclosporine A. Thus, medium- and short-length polyP plays role in signal transduction and mitochondrial metabolism of astrocytes and long chain of this polymer can be toxic for the cells.