Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Chem Biol ; 18(5): 482-491, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35194207

RESUMO

Molecular profiling of small molecules offers invaluable insights into the function of compounds and allows for hypothesis generation about small-molecule direct targets and secondary effects. However, current profiling methods are limited in either the number of measurable parameters or throughput. Here we developed a multiplexed, unbiased framework that, by linking genetic to drug-induced changes in nearly a thousand metabolites, allows for high-throughput functional annotation of compound libraries in Escherichia coli. First, we generated a reference map of metabolic changes from CRISPR interference (CRISPRi) with 352 genes in all major essential biological processes. Next, on the basis of the comparison of genetic changes with 1,342 drug-induced metabolic changes, we made de novo predictions of compound functionality and revealed antibacterials with unconventional modes of action (MoAs). We show that our framework, combining dynamic gene silencing with metabolomics, can be adapted as a general strategy for comprehensive high-throughput analysis of compound functionality from bacteria to human cell lines.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Escherichia coli , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Metabolômica/métodos
2.
BMC Bioinformatics ; 23(1): 519, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36471244

RESUMO

BACKGROUND: Independent Component Analysis (ICA) allows the dissection of omic datasets into modules that help to interpret global molecular signatures. The inherent randomness of this algorithm can be overcome by clustering many iterations of ICA together to obtain robust components. Existing algorithms for robust ICA are dependent on the choice of clustering method and on computing a potentially biased and large Pearson distance matrix. RESULTS: We present robustica, a Python-based package to compute robust independent components with a fully customizable clustering algorithm and distance metric. Here, we exploited its customizability to revisit and optimize robust ICA systematically. Of the 6 popular clustering algorithms considered, DBSCAN performed the best at clustering independent components across ICA iterations. To enable using Euclidean distances, we created a subroutine that infers and corrects the components' signs across ICA iterations. Our subroutine increased the resolution, robustness, and computational efficiency of the algorithm. Finally, we show the applicability of robustica by dissecting over 500 tumor samples from low-grade glioma (LGG) patients, where we define two new gene expression modules with key modulators of tumor progression upon IDH1 and TP53 mutagenesis. CONCLUSION: robustica brings precise, efficient, and customizable robust ICA into the Python toolbox. Through its customizability, we explored how different clustering algorithms and distance metrics can further optimize robust ICA. Then, we showcased how robustica can be used to discover gene modules associated with combinations of features of biological interest. Taken together, given the broad applicability of ICA for omic data analysis, we envision robustica will facilitate the seamless computation and integration of robust independent components in large pipelines.


Assuntos
Algoritmos , Neoplasias , Humanos , Análise por Conglomerados
4.
bioRxiv ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38915499

RESUMO

Cell type-specific alternative splicing (AS) enables differential gene isoform expression between diverse neuron types with distinct identities and functions. Current studies linking individual RNA-binding proteins (RBPs) to AS in a few neuron types underscore the need for holistic modeling. Here, we use network reverse engineering to derive a map of the neuron type-specific AS regulatory landscape from 133 mouse neocortical cell types defined by single-cell transcriptomes. This approach reliably inferred the regulons of 350 RBPs and their cell type-specific activities. Our analysis revealed driving factors delineating neuronal identities, among which we validated Elavl2 as a key RBP for MGE-specific splicing in GABAergic interneurons using an in vitro ESC differentiation system. We also identified a module of exons and candidate regulators specific for long- and short-projection neurons across multiple neuronal classes. This study provides a resource for elucidating splicing regulatory programs that drive neuronal molecular diversity, including those that do not align with gene expression-based classifications.

5.
Cell Syst ; 14(4): 312-323.e3, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36889307

RESUMO

Codon usage influences gene expression distinctly depending on the cell context. Yet, the importance of codon bias in the simultaneous turnover of specific groups of protein-coding genes remains to be investigated. Here, we find that genes enriched in A/T-ending codons are expressed more coordinately in general and across tissues and development than those enriched in G/C-ending codons. tRNA abundance measurements indicate that this coordination is linked to the expression changes of tRNA isoacceptors reading A/T-ending codons. Genes with similar codon composition are more likely to be part of the same protein complex, especially for genes with A/T-ending codons. The codon preferences of genes with A/T-ending codons are conserved among mammals and other vertebrates. We suggest that this orchestration contributes to tissue-specific and ontogenetic-specific expression, which can facilitate, for instance, timely protein complex formation.


Assuntos
Mamíferos , Vertebrados , Animais , Códon/genética , Mamíferos/genética , Vertebrados/genética , RNA de Transferência/genética , Uso do Códon
6.
Nat Commun ; 13(1): 7147, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36414642

RESUMO

Regulation of microtubule (MT) dynamics is key for mitotic spindle assembly and faithful chromosome segregation. Here we show that polyglutamylation, a still understudied post-translational modification of spindle MTs, is essential to define their dynamics within the range required for error-free chromosome segregation. We identify TTLL11 as an enzyme driving MT polyglutamylation in mitosis and show that reducing TTLL11 levels in human cells or zebrafish embryos compromises chromosome segregation fidelity and impairs early embryonic development. Our data reveal a mechanism to ensure genome stability in normal cells that is compromised in cancer cells that systematically downregulate TTLL11. Our data suggest a direct link between MT dynamics regulation, MT polyglutamylation and two salient features of tumour cells, aneuploidy and chromosome instability (CIN).


Assuntos
Segregação de Cromossomos , Neoplasias , Animais , Humanos , Cinetocoros , Fuso Acromático/genética , Peixe-Zebra/genética , Microtúbulos/genética , Neoplasias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA