Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(5): e17334, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38780465

RESUMO

The crises of climate change and biodiversity loss are interlinked and must be addressed jointly. A proposed solution for reducing reliance on fossil fuels, and thus mitigating climate change, is the transition from conventional combustion-engine to electric vehicles. This transition currently requires additional mineral resources, such as nickel and cobalt used in car batteries, presently obtained from land-based mines. Most options to meet this demand are associated with some biodiversity loss. One proposal is to mine the deep seabed, a vast, relatively pristine and mostly unexplored region of our planet. Few comparisons of environmental impacts of solely expanding land-based mining versus extending mining to the deep seabed for the additional resources exist and for biodiversity only qualitative. Here, we present a framework that facilitates a holistic comparison of relative ecosystem impacts by mining, using empirical data from relevant environmental metrics. This framework (Environmental Impact Wheel) includes a suite of physicochemical and biological components, rather than a few selected metrics, surrogates, or proxies. It is modified from the "recovery wheel" presented in the International Standards for the Practice of Ecological Restoration to address impacts rather than recovery. The wheel includes six attributes (physical condition, community composition, structural diversity, ecosystem function, external exchanges and absence of threats). Each has 3-5 sub attributes, in turn measured with several indicators. The framework includes five steps: (1) identifying geographic scope; (2) identifying relevant spatiotemporal scales; (3) selecting relevant indicators for each sub-attribute; (4) aggregating changes in indicators to scores; and (5) generating Environmental Impact Wheels for targeted comparisons. To move forward comparisons of land-based with deep seabed mining, thresholds of the indicators that reflect the range in severity of environmental impacts are needed. Indicators should be based on clearly articulated environmental goals, with objectives and targets that are specific, measurable, achievable, relevant, and time bound.


Assuntos
Mineração , Biodiversidade , Ecossistema , Meio Ambiente , Conservação dos Recursos Naturais , Mudança Climática
2.
Ecol Evol ; 12(11): e9473, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36381393

RESUMO

Plants alter soil biological communities, generating ecosystem legacies that affect the performance of successive plants, influencing plant community assembly and successional trajectories. Yet, our understanding of how microbe-mediated soil legacies influence plant establishment is limited for primary successional systems and forest ecosystems, particularly for ectomycorrhizal plants. In a two-phase greenhouse experiment using primary successional mine reclamation materials with or without forest soil additions, we conditioned soil with an early successional shrub with low mycorrhizal dependence (willow, Salix scouleriana) and a later-successional ectomycorrhizal conifer (spruce, Picea engelmannii × glauca). The same plant species and later-successional plants (spruce and/or redcedar, Thuja plicata, a mid- to late-successional arbuscular mycorrhizal conifer) were grown as legacy-phase seedlings in conditioned soils and unconditioned control soils. Legacy effects were evaluated based on seedling survival and biomass, and the abundance and diversity of root fungal symbionts and pathogens. We found negative intraspecific (same-species) soil legacies for willow associated with pathogen accumulation, but neutral to positive intraspecific legacies in spruce associated with increased mycorrhizal fungal colonization and diversity. Our findings support research showing that soil legacy effects vary with plant nutrient acquisition strategy, with plants with low mycorrhizal dependence experiencing negative feedbacks and ectomycorrhizal plants experiencing positive feedbacks. Soil legacy effects of willow on next-stage successional species (spruce and redcedar) were negative, potentially due to allelopathy, while ectomycorrhizal spruce had neutral to negative legacy effects on arbuscular mycorrhizal redcedar, likely due to the trees not associating with compatible mycorrhizae. Thus, positive biological legacies may be limited to scenarios where mycorrhizal-dependent plants grow in soil containing legacies of compatible mycorrhizae. We found that soil legacies influenced plant performance in mine reclamation materials with and without forest soil additions, indicating that initial restoration actions may potentially exert long-term effects on plant community composition, even in primary successional soils with low microbial activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA