Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Curr Genet ; 63(4): 685-696, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27909797

RESUMO

Carbon catabolite repression (CCR) is a common regulatory mechanism used by microorganisms to prioritize use of a preferred carbon source (usually glucose). The CreC WD40-repeat protein is a major component of the CCR pathway in Aspergillus nidulans. To clarify the function of the CreC ortholog from Magnaporthe oryzae in regulating gene expression important for pathogenesis, MoCreC was identified and genetically characterized. The vegetative growth rate of the MoCreC deletion mutant on various carbon sources was reduced. The MoCreC mutant produced fewer conidia and with about 60% of conidia having septation defects. Appressorium formation was impaired in the MoCreC mutant. Although some appressoria of the mutant could penetrate the leaf surface successfully, the efficiency of penetration and invasive growth of infection hyphae was reduced, resulting in attenuated virulence toward host plants. The CCR was defective as the mutant was more sensitive to allyl alcohol in the presence of glucose, and 2-deoxyglucose was unable to fully repress utilization of secondary carbon sources. qRT-PCR results indicated that the genes encoding cell wall degradation enzymes, such as ß-glucosidase, feruloyl esterase and exoglucanase, were upregulated in MoCreC mutant. Taken together, we conclude that MoCreC is a major regulator of CCR and plays significant roles in regulating growth, conidiation, and pathogenicity of M. oryzae.


Assuntos
Repressão Catabólica/genética , Magnaporthe/genética , Esporos Fúngicos/genética , Aspergillus nidulans/genética , Proteínas Fúngicas/genética , Magnaporthe/crescimento & desenvolvimento , Magnaporthe/patogenicidade , Proteínas Quinases/genética , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/patogenicidade , Repetições WD40/genética
2.
Biomolecules ; 14(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38397385

RESUMO

The regulation of plant biomass degradation by fungi is critical to the carbon cycle, and applications in bioproducts and biocontrol. Trichoderma harzianum is an important plant biomass degrader, enzyme producer, and biocontrol agent, but few putative major transcriptional regulators have been deleted in this species. The T. harzianum ortholog of the transcriptional activator XYR1/XlnR/XLR-1 was deleted, and the mutant strains were analyzed through growth profiling, enzymatic activities, and transcriptomics on cellulose. From plate cultures, the Δxyr1 mutant had reduced growth on D-xylose, xylan, and cellulose, and from shake-flask cultures with cellulose, the Δxyr1 mutant had ~90% lower ß-glucosidase activity, and no detectable ß-xylosidase or cellulase activity. The comparison of the transcriptomes from 18 h shake-flask cultures on D-fructose, without a carbon source, and cellulose, showed major effects of XYR1 deletion whereby the Δxyr1 mutant on cellulose was transcriptionally most similar to the cultures without a carbon source. The cellulose induced 43 plant biomass-degrading CAZymes including xylanases as well as cellulases, and most of these had massively lower expression in the Δxyr1 mutant. The expression of a subset of carbon catabolic enzymes, other transcription factors, and sugar transporters was also lower in the Δxyr1 mutant on cellulose. In summary, T. harzianum XYR1 is the master regulator of cellulases and xylanases, as well as regulating carbon catabolic enzymes.


Assuntos
Celulases , Hypocreales , Biomassa , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fatores de Transcrição/metabolismo , Perfilação da Expressão Gênica , Hypocreales/metabolismo , Celulose , Carbono
3.
Pest Manag Sci ; 77(10): 4669-4679, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34116584

RESUMO

BACKGROUND: Sanguinarine (SAN) is a benzophenanthridine alkaloid that broadly targets a range of pathways in mammalian and fungal cells. In this study we set out to explore the molecular mechanism of sanguinarine inhibition of the fungal development and pathogenicity of Magnaporthe oryzae with the hope that sanguinarine will bolster the development of antiblast agents. RESULTS: We found that the fungus exhibited a significant reduction in vegetative growth and hyphal melanization while the spores produced long germ tubes on the artificial hydrophobic surface characteristic of a defect in thigmotropic sensing when exposed to 4, 8 and 0.5 µm sanguinarine, respectively. Consistent with these findings, we observed that the genes involved in melanin biosynthesis and the fungal hydrophobin MoMPG1 were remarkably suppressed in mycelia treated with 8 µm sanguinarine. Additionally, sanguinarine inhibited appressorium formation at a dose of 1.0 µm and this defect was restored by supplementing 5 mM of exogenous cAMP. By qRT-PCR assay we found cAMP pathway signalling genes such as MoCAP1 and MoCpkA were significantly repressed whereas MoCDTF1 and MoSOM1 were upregulated in sanguinarine-treated strains. Furthermore, we showed that sanguinarine does not selectively inhibit vegetative growth and appressorium formation of Guy11 but also other strains of M. oryzae. Finally, treatment of sanguinarine impaired the appressorium-mediated penetration and pathogenicity of M. oryzae in a dose-dependent manner. CONCLUSION: Based on our results we concluded that sanguinarine is an attractive antimicrobial candidate for fungicide development in the control of rice blast disease. © 2021 Society of Chemical Industry.


Assuntos
Magnaporthe , Oryza , Ascomicetos , Benzofenantridinas/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Isoquinolinas , Oryza/metabolismo , Doenças das Plantas , Virulência
4.
Mycology ; 9(3): 211-222, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30181927

RESUMO

Rice blast caused by Magnaporthe oryzae is the most destructive disease affecting the rice production (Oryza sativa), with an average global loss of 10-30% per annum. Recent reports have indicated that the fungus also inflicts blast disease on wheat (Triticum aestivum) posing a serious threat to the wheat production. Due to its easily detected infectious process and manoeuvrable genetic manipulation, M. oryzae is considered a model organism for exploring the molecular mechanism underlying fungal pathogenicity during the pathogen-host interaction. M. oryzae utilises an infectious structure called appressorium to breach the host surface by generating high turgor pressure. The appressorium development is induced by physical and chemical cues which are coordinated by the highly conserved cAMP/PKA, MAPK and calcium signalling cascades. Genes involved in the appressorium development have been identified and well studied in M. oryzae, a summary of the working gene network linking stimuli sensing and physiological transformation of appressorium is needed. This review provides a comprehensive discussion regarding the regulatory networks underlying appressorium development with particular emphasis on sensing of appressorium inducing stimuli, signal transduction, transcriptional regulation and the corresponding developmental and physiological responses. We also discussed the crosstalk and interaction of various pathways during the appressorium development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA