Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Mol Psychiatry ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454085

RESUMO

Adult cytogenesis, the continuous generation of newly-born neurons (neurogenesis) and glial cells (gliogenesis) throughout life, is highly impaired in several neuropsychiatric disorders, such as Major Depressive Disorder (MDD), impacting negatively on cognitive and emotional domains. Despite playing a critical role in brain homeostasis, the importance of gliogenesis has been overlooked, both in healthy and diseased states. To examine the role of newly formed glia, we transplanted Glial Restricted Precursors (GRPs) into the adult hippocampal dentate gyrus (DG), or injected their secreted factors (secretome), into a previously validated transgenic GFAP-tk rat line, in which cytogenesis is transiently compromised. We explored the long-term effects of both treatments on physiological and behavioral outcomes. Grafted GRPs reversed anxiety-like deficits and demonstrated an antidepressant-like effect, while the secretome promoted recovery of only anxiety-like behavior. Furthermore, GRPs elicited a recovery of neurogenic and gliogenic levels in the ventral DG, highlighting the unique involvement of these cells in the regulation of brain cytogenesis. Both GRPs and their secretome induced significant alterations in the DG proteome, directly influencing proteins and pathways related to cytogenesis, regulation of neural plasticity and neuronal development. With this work, we demonstrate a valuable and specific contribution of glial progenitors to normalizing gliogenic levels, rescuing neurogenesis and, importantly, promoting recovery of emotional deficits characteristic of disorders such as MDD.

2.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37833989

RESUMO

Differentiated thyroid cancer is the most common malignancy of the endocrine system. Although most thyroid nodules are benign, given the high incidence of thyroid nodules in the population, it is important to understand the differences between benign and malignant thyroid cancer and the molecular alterations associated with malignancy to improve detection and signal potential diagnostic, prognostic, and therapeutic targets. Proteomics analysis of benign and malignant human thyroid tissue largely revealed changes indicating modifications in RNA regulation, a common cancer characteristic. In addition, changes in the immune system and cell membrane/endocytic processes were also suggested to be involved. Annexin A1 was considered a potential malignancy biomarker and, similarly to other annexins, it was found to increase in the malignant group. Furthermore, a bioinformatics approach points to the transcription factor Sp1 as being potentially involved in most of the alterations seen in the malignant thyroid nodules.


Assuntos
Neoplasias da Glândula Tireoide , Nódulo da Glândula Tireoide , Humanos , Nódulo da Glândula Tireoide/diagnóstico , Anexinas/genética , RNA Mensageiro/genética , Proteômica , Neoplasias da Glândula Tireoide/patologia
3.
Am J Pathol ; 191(3): 487-502, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33307037

RESUMO

Endoplasmic reticulum (ER) stress is shown to promote nucleus pulposus (NP) cell apoptosis and intervertebral disc degeneration. However, little is known about ER stress regulation by the hypoxic disc microenvironment and its contribution to extracellular matrix homeostasis. NP cells were cultured under hypoxia (1% partial pressure of oxygen) to assess ER stress status, and gain-of-function and loss-of-function approaches were used to assess the role of hypoxia-inducible factor (HIF)-1α in this pathway. In addition, the contribution of ER stress induction on the NP cell secretome was assessed by a nontargeted quantitative proteomic analysis by sequential windowed data independent acquisition of the total high-resolution mass spectra-mass spectrometry. NP cells exhibited a lower ER stress burden under hypoxia. Knockdown of HIF-1α increased C/EBP homologous protein, protein kinase RNA-like endoplasmic reticulum kinase (PERK), and activating transcription factor 6 (ATF6) levels, whereas HIF-1α stabilization decreased the expression of ER stress markers Ddit3, Hsp5a, Atf6, and Eif2a. Interestingly, ER stress inducers tunicamycin and thapsigargin induced HIF-1α activity under hypoxia while promoting the unfolded protein response. NP cell secretome analysis demonstrated an impact of ER stress induction on extracellular matrix secretion, with decreases in collagens and cell adhesion-related proteins. Moreover, analysis of transcriptomic data of NP tissues from aged mice and degenerated human discs showed higher levels of unfolded protein response markers and decreased levels of matrix components. Our study shows, for the first time, that hypoxia and HIF-1α attenuate ER stress responses in NP cells, and ER stress promotes inefficient extracellular matrix secretion under hypoxia.


Assuntos
Estresse do Retículo Endoplasmático , Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/fisiopatologia , Núcleo Pulposo/patologia , Animais , Proteínas da Matriz Extracelular/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Pulposo/metabolismo , Ratos , Ratos Sprague-Dawley
4.
Cell Tissue Res ; 390(2): 207-227, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36083358

RESUMO

In echinoderms, the coelomic epithelium (CE) is reportedly the source of new circulating cells (coelomocytes) as well as the provider of molecular factors such as immunity-related molecules. However, its overall functions have been scarcely studied in detail. In this work, we used an integrated approach based on both microscopy (light and electron) and proteomic analyses to investigate the arm CE in the starfish Marthasterias glacialis during different physiological conditions (i.e., non-regenerating and/or regenerating). Our results show that CE cells share both ultrastructural and proteomic features with circulating coelomocytes (echinoderm immune cells). Additionally, microscopy and proteomic analyses indicate that CE cells are actively involved in protein synthesis and processing, and membrane trafficking processes such as phagocytosis (particularly of myocytes) and massive secretion phenomena. The latter might provide molecules (e.g., immune factors) and fluids for proper arm growth/regrowth. No stem cell marker was identified and no pre-existing stem cell was observed within the CE. Rather, during regeneration, CE cells undergo dedifferentiation and epithelial-mesenchymal transition to deliver progenitor cells for tissue replacement. Overall, our work underlines that echinoderm CE is not a "simple epithelial lining" and that instead it plays multiple functions which span from immunity-related roles as well as being a source of regeneration-competent cells for arm growth/regrowth.


Assuntos
Equinodermos , Proteômica , Animais , Epitélio/ultraestrutura , Estrelas-do-Mar , Células Epiteliais
5.
Mar Drugs ; 20(4)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35447897

RESUMO

The vast ocean holds many unexplored organisms with unique adaptive features that enable them to thrive in their environment. The secretion of fluorescent proteins is one of them, with reports on the presence of such compounds in marine annelids being scarce. The intertidal Eulalia sp. is an example. The worm secretes copious amounts of mucus, that when purified and concentrated extracts, yield strong fluorescence under UV light. Emission has two main maxima, at 400 nm and at 500 nm, with the latter responsible for the blue-greenish fluorescence. Combining proteomics and transcriptomics techniques, we identified ubiquitin, peroxiredoxin, and 14-3-3 protein as key elements in the mucus. Fluorescence was found to be mainly modulated by redox status and pH, being consistently upheld in extracts prepared in Tris-HCl buffer with reducing agent at pH 7 and excited at 330 nm. One of the proteins associated with the fluorescent signal was localized in secretory cells in the pharynx. The results indicate that the secretion of fluorescent proteinaceous complexes can be an important defense against UV for this dweller. Additionally, the internalization of fluorescent complexes by ovarian cancer cells and modulation of fluorescence of redox status bears important considerations for biotechnological application of mucus components as markers.


Assuntos
Anelídeos , Poliquetos , Animais , Biotecnologia , Corantes/metabolismo , Humanos , Muco/química , Extratos Vegetais/análise , Poliquetos/química , Proteínas/análise
6.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36430211

RESUMO

Tuberculosis (TB) is a transmissible disease listed as one of the 10 leading causes of death worldwide (10 million infected in 2019). A swift and precise diagnosis is essential to forestall its transmission, for which the discovery of effective diagnostic biomarkers is crucial. In this study, we aimed to discover molecular biomarkers for the early diagnosis of tuberculosis. Two independent cohorts comprising 29 and 34 subjects were assayed by proteomics, and 49 were included for metabolomic analysis. All subjects were arranged into three experimental groups­healthy controls (controls), latent TB infection (LTBI), and TB patients. LC-MS/MS blood serum protein and metabolite levels were submitted to univariate, multivariate, and ROC analysis. From the 149 proteins quantified in the discovery set, 25 were found to be differentially abundant between controls and TB patients. The AUC, specificity, and sensitivity, determined by ROC statistical analysis of the model composed of four of these proteins considering both proteomic sets, were 0.96, 93%, and 91%, respectively. The five metabolites (9-methyluric acid, indole-3-lactic acid, trans-3-indoleacrylic acid, hexanoylglycine, and N-acetyl-L-leucine) that better discriminate the control and TB patient groups (VIP > 1.75) from a total of 92 metabolites quantified in both ionization modes were submitted to ROC analysis. An AUC = 1 was determined, with all samples being correctly assigned to the respective experimental group. An integrated ROC analysis enrolling one protein and four metabolites was also performed for the common control and TB patients in the proteomic and metabolomic groups. This combined signature correctly assigned the 12 controls and 12 patients used only for prediction (AUC = 1, specificity = 100%, and sensitivity = 100%). This multiomics approach revealed a biomarker signature for tuberculosis diagnosis that could be potentially used for developing a point-of-care diagnosis clinical test.


Assuntos
Tuberculose Latente , Tuberculose , Humanos , Proteômica , Cromatografia Líquida , Espectrometria de Massas em Tandem , Tuberculose/diagnóstico , Tuberculose Latente/diagnóstico , Biomarcadores
7.
Cell Mol Life Sci ; 77(7): 1371-1386, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31346634

RESUMO

FA-SAT is a highly conserved satellite DNA sequence transcribed in many Bilateria species. To disclose the cellular and functional profile of FA-SAT non-coding RNAs, a comprehensive experimental approach, including the transcripts location in the cell and in the cell cycle, the identification of its putative protein interactors, and silencing/ectopic expression phenotype analysis, was performed. FA-SAT non-coding RNAs play a nuclear function at the G1 phase of the cell cycle and the interactomic assay showed that the PKM2 protein is the main interactor. The disruption of the FA-SAT non-coding RNA/PKM2 protein complex, by the depletion of either FA-SAT or PKM2, results in the same phenotype-apoptosis, and the ectopic overexpression of FA-SAT did not affect the cell-cycle progression, but promotes the PKM2 nuclear accumulation. Overall, our data first describe the importance of this ribonucleoprotein complex in apoptosis and cell-cycle progression, what foresees a promising novel candidate molecular target for cancer therapy and diagnosis.


Assuntos
Apoptose , Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , RNA não Traduzido/metabolismo , Hormônios Tireóideos/metabolismo , Animais , Gatos , Núcleo Celular/metabolismo , Proliferação de Células , Células HeLa , Humanos , Modelos Biológicos , Fenótipo , Ligação Proteica , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Satélite/genética , RNA Satélite/metabolismo , RNA não Traduzido/genética , Proteínas de Ligação a Hormônio da Tireoide
8.
Stem Cells ; 36(5): 696-708, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29352743

RESUMO

Patients suffering from spinal cord injury (SCI) still have a dismal prognosis. Despite all the efforts developed in this area, currently there are no effective treatments. Therefore, cell therapies have been proposed as a viable alternative to the current treatments used. Adipose tissue-derived stromal cells (ASCs) and olfactory ensheathing cells (OECs) have been used with promising results in different models of SCI, namely due to the regenerative properties of the secretome of the first, and the guidance capability of the second. Using an in vitro model of axonal growth, the dorsal root ganglia explants, we demonstrated that OECs induce neurite outgrowth mainly through cell-cell interactions, while ASCs' effects are strongly mediated by the release of paracrine factors. A proteomic analysis of ASCs' secretome revealed the presence of proteins involved in VEGF, PI3K, and Cadherin signaling pathways, which may be responsible for the effects observed. Then, the cotransplantation of ASCs and OECs showed to improve motor deficits of SCI-rats. Particular parameters of movement such as stepping, coordination, and toe clearance were improved in rats that received the transplant of cells, in comparison to nontreated rats. A histological analysis of the spinal cord tissues revealed that transplantation of ASCs and OECs had a major effect on the reduction of inflammatory cells close the lesion site. A slight reduction of astrogliosis was also evident. Overall, the results obtained with the present work indicate that the cotransplantation of ASCs and OECs brings important functional benefits to the injured spinal cord. Stem Cells 2018;36:696-708.


Assuntos
Tecido Adiposo/citologia , Bulbo Olfatório/citologia , Traumatismos da Medula Espinal/terapia , Células Estromais/citologia , Animais , Células Cultivadas , Feminino , Humanos , Regeneração Nervosa/fisiologia , Ratos Wistar , Transplante de Células-Tronco/métodos , Células-Tronco/citologia , Células Estromais/fisiologia
9.
Int J Mol Sci ; 21(1)2019 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-31905672

RESUMO

The well-known antimicrobial effects of chitosan (CS) polymers make them a promising adjuvant in enhancing antibiotic effectiveness against human pathogens. However, molecular CS antimicrobial mechanisms remain unclear, despite the insights presented in the literature. Thus, the aim of the present study was to depict the molecular effects implicated in the interaction of low or medium molecular mass CS polymers and their nanoparticle-counterparts against Escherichia coli. The differential E. coli proteomes sensitized to either CS polymers or nanoparticles were investigated by nano liquid chromatography-mass spectrometry (micro-LC-MS/MS). A total of 127 proteins differentially expressed in CS-sensitized bacteria were predominantly involved in (i) structural functions associated to the stability of outer membrane, (ii) increment of protein biosynthesis due to high abundance of ribosomal proteins and (iii) activation of biosynthesis of amino acid and purine metabolism pathways. Antibacterial activity of CS polymers/nanoparticles seems to be triggered by the outer bacterial membrane disassembly, leading to increased protein biosynthesis by diverting the metabolic flux to amino acid and purine nucleotides supply. Understanding CS-antibacterial molecular effects can be valuable to optimize the use of CS-based nanomaterials in food decontamination, and may represent a breakthrough on CS nanocapsules-drug delivery devices for novel antibiotics, as the chitosan-disassembly of bacteria cell membranes can potentialize antibiotic effects.


Assuntos
Antibacterianos/farmacologia , Quitosana/análogos & derivados , Nanopartículas/química , Proteoma/metabolismo , Antibacterianos/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Quitosana/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Proteoma/genética
10.
J Transl Med ; 15(1): 200, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28969635

RESUMO

BACKGROUND: Glioblastoma (GBM) is a highly aggressive primary brain cancer, for which curative therapies are not available. An emerging therapeutic approach suggested to have potential to target malignant gliomas has been based on the use of multipotent mesenchymal stem cells (MSCs), either unmodified or engineered to deliver anticancer therapeutic agents, as these cells present an intrinsic capacity to migrate towards malignant tumors. Nevertheless, it is still controversial whether this innate tropism of MSCs towards the tumor area is associated with cancer promotion or suppression. Considering that one of the major mechanisms by which MSCs interact with and modulate tumor cells is via secreted factors, we studied how the secretome of MSCs modulates critical hallmark features of GBM cells. METHODS: The effect of conditioned media (CM) from human umbilical cord perivascular cells (HUCPVCs, a MSC population present in the Wharton's jelly of the umbilical cord) on GBM cell viability, migration, proliferation and sensitivity to temozolomide treatment of U251 and SNB-19 GBM cells was evaluated. The in vivo chicken chorioallantoic membrane (CAM) assay was used to evaluate the effect of HUCPVCs CM on tumor growth and angiogenesis. The secretome of HUCPVCs was characterized by proteomic analyses. RESULTS: We found that both tested GBM cell lines exposed to HUCPVCs CM presented significantly higher cellular viability, proliferation and migration. In contrast, resistance of GBM cells to temozolomide chemotherapy was not significantly affected by HUCPVCs CM. In the in vivo CAM assay, CM from HUCPVCs promoted U251 and SNB-19 tumor cells growth. Proteomic analysis to characterize the secretome of HUCPVCs identified several proteins involved in promotion of cell survival, proliferation and migration, revealing novel putative molecular mediators for the effects observed in GBM cells exposed to HUCPVCs CM. CONCLUSIONS: These findings provide novel insights to better understand the interplay between GBM cells and MSCs, raising awareness to potential safety issues regarding the use of MSCs as stem-cell based therapies for GBM.


Assuntos
Neoplasias Encefálicas/fisiopatologia , Glioblastoma/fisiopatologia , Células-Tronco Mesenquimais/metabolismo , Proteoma/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Dacarbazina/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Temozolomida
11.
Cell Commun Signal ; 15(1): 37, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28969644

RESUMO

BACKGROUND: Glioblastoma (GBM), the most malignant primary brain tumor, leads to poor and unpredictable clinical outcomes. Recent studies showed the tumor microenvironment has a critical role in regulating tumor growth by establishing a complex network of interactions with tumor cells. In this context, we investigated how GBM cells modulate resident glial cells, particularly their paracrine activity, and how this modulation can influence back on the malignant phenotype of GBM cells. METHODS: Conditioned media (CM) of primary mouse glial cultures unexposed (unprimed) or exposed (primed) to the secretome of GL261 GBM cells were analyzed by proteomic analysis. Additionally, these CM were used in GBM cells to evaluate their impact in glioma cell viability, migration capacity and activation of tumor-related intracellular pathways. RESULTS: The proteomic analysis revealed that the pre-exposure of glial cells to CM from GBM cells led to the upregulation of several proteins related to inflammatory response, cell adhesion and extracellular structure organization within the secretome of primed glial cells. At the functional levels, CM derived from unprimed glial cells favored an increase in GBM cell migration capacity, while CM from primed glial cells promoted cells viability. These effects on GBM cells were accompanied by activation of particular intracellular cancer-related pathways, mainly the MAPK/ERK pathway, which is a known regulator of cell proliferation. CONCLUSIONS: Together, our results suggest that glial cells can impact on the pathophysiology of GBM tumors, and that the secretome of GBM cells is able to modulate the secretome of neighboring glial cells, in a way that regulates the "go-or-grow" phenotypic switch of GBM cells.


Assuntos
Neoplasias Encefálicas/metabolismo , Proliferação de Células , Glioblastoma/metabolismo , Neuroglia/metabolismo , Fenótipo , Proteoma/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/efeitos dos fármacos , Neuroglia/fisiologia , Comunicação Parácrina
12.
Proteomics ; 16(13): 1847-51, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27094026

RESUMO

Proteomic approaches are extremely valuable in many fields of research, where mass spectrometry methods have gained an increasing interest, especially because of the ability to perform quantitative analysis. Nonetheless, sample preparation prior to mass spectrometry analysis is of the utmost importance. In this work, two protein precipitation approaches, widely used for cleaning and concentrating protein samples, were tested and compared in very diluted samples solubilized in a strong buffer (containing SDS). The amount of protein recovered after acetone and TCA/acetone precipitation was assessed, as well as the protein identification and relative quantification by SWATH-MS yields were compared with the results from the same sample without precipitation. From this study, it was possible to conclude that in the case of diluted samples in denaturing buffers, the use of cold acetone as precipitation protocol is more favourable than the use of TCA/acetone in terms of reproducibility in protein recovery and number of identified and quantified proteins. Furthermore, the reproducibility in relative quantification of the proteins is even higher in samples precipitated with acetone compared with the original sample.


Assuntos
Acetona/química , Precipitação Química , Proteínas/análise , Dodecilsulfato de Sódio/química , Ácido Tricloroacético/química , Soluções Tampão , Cromatografia Líquida/métodos , Desnaturação Proteica , Proteínas/isolamento & purificação , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos
13.
Antioxidants (Basel) ; 13(6)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38929122

RESUMO

Oxidation-reduction post-translational modifications (redox-PTMs) are chemical alterations to amino acids of proteins. Redox-PTMs participate in the regulation of protein conformation, localization and function, acting as signalling effectors that impact many essential biochemical processes in the cells. Crucially, the dysregulation of redox-PTMs of proteins has been implicated in the pathophysiology of numerous human diseases, including neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. This review aims to highlight the current gaps in knowledge in the field of redox-PTMs biology and to explore new methodological advances in proteomics and computational modelling that will pave the way for a better understanding of the role and therapeutic potential of redox-PTMs of proteins in neurodegenerative diseases. Here, we summarize the main types of redox-PTMs of proteins while providing examples of their occurrence in neurodegenerative diseases and an overview of the state-of-the-art methods used for their detection. We explore the potential of novel computational modelling approaches as essential tools to obtain insights into the precise role of redox-PTMs in regulating protein structure and function. We also discuss the complex crosstalk between various PTMs that occur in living cells. Finally, we argue that redox-PTMs of proteins could be used in the future as diagnosis and prognosis biomarkers for neurodegenerative diseases.

14.
Antioxidants (Basel) ; 12(5)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37237939

RESUMO

Theragnostics is a promising approach that integrates diagnostics and therapeutics into a single personalized strategy. To conduct effective theragnostic studies, it is essential to create an in vitro environment that accurately reflects the in vivo conditions. In this review, we discuss the importance of redox homeostasis and mitochondrial function in the context of personalized theragnostic approaches. Cells have several ways to respond to metabolic stress, including changes in protein localization, density, and degradation, which can promote cell survival. However, disruption of redox homeostasis can lead to oxidative stress and cellular damage, which are implicated in various diseases. Models of oxidative stress and mitochondrial dysfunction should be developed in metabolically conditioned cells to explore the underlying mechanisms of diseases and develop new therapies. By choosing an appropriate cellular model, adjusting cell culture conditions and validating the cellular model, it is possible to identify the most promising therapeutic options and tailor treatments to individual patients. Overall, we highlight the importance of precise and individualized approaches in theragnostics and the need to develop accurate in vitro models that reflect the in vivo conditions.

15.
Transl Psychiatry ; 13(1): 312, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803004

RESUMO

Striatal dysfunction has been implicated in the pathophysiology of schizophrenia, a disorder characterized by positive symptoms such as hallucinations and delusions. Haloperidol is a typical antipsychotic medication used in the treatment of schizophrenia that is known to antagonize dopamine D2 receptors, which are abundantly expressed in the striatum. However, haloperidol's delayed therapeutic effect also suggests a mechanism of action that may go beyond the acute blocking of D2 receptors. Here, we performed proteomic analysis of striatum brain tissue and found more than 400 proteins significantly altered after 30 days of chronic haloperidol treatment in mice, namely proteins involved in glutamatergic and GABAergic synaptic transmission. Cell-type specific electrophysiological recordings further revealed that haloperidol not only reduces the excitability of striatal medium spiny neurons expressing dopamine D2 receptors (D2-MSNs) but also affects D1-MSNs by increasing the ratio of inhibitory/excitatory synaptic transmission (I/E ratio) specifically onto D1-MSNs but not D2-MSNs. Therefore, we propose the slow remodeling of D1-MSNs as a mechanism mediating the delayed therapeutic effect of haloperidol over striatum circuits. Understanding how haloperidol exactly contributes to treating schizophrenia symptoms may help to improve therapeutic outcomes and elucidate the molecular underpinnings of this disorder.


Assuntos
Antipsicóticos , Haloperidol , Camundongos , Animais , Haloperidol/farmacologia , Proteômica , Neurônios/metabolismo , Corpo Estriado/metabolismo , Antipsicóticos/farmacologia , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D1 , Camundongos Transgênicos
16.
Biomolecules ; 13(10)2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37892144

RESUMO

The global trend of rising (male) infertility is concerning, and the unidentifiable causes in half of the cases, the so-called unknown origin male infertility (UOMI), demands a better understanding and assessment of both external/internal factors and mechanisms potentially involved. In this work, it was our aim to obtain new insight on UOMI, specifically on idiopathic (ID) and Unexplained male infertility (UMI), relying on a detailed evaluation of the male gamete, including functional, metabolic and proteomic aspects. For this purpose, 1114 semen samples, from males in couples seeking infertility treatment, were collected at the Reproductive Medicine Unit from the Centro Hospitalar e Universitário de Coimbra (CHUC), from July 2018-July 2022. Based on the couples' clinical data, seminal/hormonal analysis, and strict eligibility criteria, samples were categorized in 3 groups, control (CTRL), ID and UMI. Lifestyle factors and anxiety/depression symptoms were assessed via survey. Sperm samples were evaluated functionally, mitochondrially and using proteomics. The results of Assisted Reproduction Techniques were assessed whenever available. According to our results, ID patients presented the worst sperm functional profile, while UMI patients were similar to controls. The proteomic analysis revealed 145 differentially expressed proteins, 8 of which were specifically altered in ID and UMI samples. Acrosin (ACRO) and sperm acrosome membrane-associated protein 4 (SACA4) were downregulated in ID patients while laminin subunit beta-2 (LAMB2), mannose 6-phosphate isomerase (MPI), ATP-dependent 6-phosphofructokinase liver type (PFKAL), STAR domain-containing protein 10 (STA10), serotransferrin (TRFE) and exportin-2 (XPO2) were downregulated in UMI patients. Using random forest analysis, SACA4 and LAMB2 were identified as the sperm proteins with a higher chance of distinguishing ID and UMI patients, and their function and expression variation were in accordance with the functional results. No alterations were observed in terms of lifestyle and psychological factors among the 3 groups. These findings obtained in an experimental setting based on 3 well-defined groups of subjects, might help to validate new biomarkers for unknown origin male infertility (ID and UMI) that, in the future, can be used to improve diagnostics and treatments.


Assuntos
Infertilidade Masculina , Sêmen , Humanos , Masculino , Sêmen/metabolismo , Análise do Sêmen , Proteômica/métodos , Espermatozoides/metabolismo
17.
Stem Cell Rev Rep ; 19(1): 248-263, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36152233

RESUMO

Mesenchymal stem cells (MSCs) hold promising therapeutic potential in several clinical applications, mainly due to their paracrine activity. The implementation of future secretome-based therapeutic strategies requires the use of easily accessible MSCs sources that provide high numbers of cells with homogenous characteristics. MSCs obtained from induced pluripotent stem cells (iMSCs) have been put forward as an advantageous alternative to the gold-standard tissue sources, such as bone marrow (BM-MSCs). In this study, we aimed at comparing the secretome of BM-MSCs and iMSCs over long-term culture. For that, we performed a broad characterization of both sources regarding their identity, proteomic secretome analysis, as well as replicative senescence and associated phenotypes, including its effects on MSCs secretome composition and immunomodulatory action. Our results evidence a rejuvenated phenotype of iMSCs, which is translated into a superior proliferative capacity before the induction of replicative senescence. Despite this significant difference between iMSCs and BM-MSCs proliferation, both untargeted and targeted proteomic analysis revealed a similar secretome composition for both sources in pre-senescent and senescent states. These results suggest that shifting from the use of BM-MSCs to a more advantageous source, like iMSCs, may yield similar therapeutic effects as identified over the past years for this gold-standard MSC source.


Assuntos
Medula Óssea , Células-Tronco Mesenquimais , Diferenciação Celular , Proteômica , Secretoma , Senescência Celular
18.
Redox Biol ; 51: 102283, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35303520

RESUMO

Efforts have been made to understand the physiological and pathological role of DJ-1, a Parkinson's disease (PD)-associated protein, to provide new insights into PD pathophysiology. Such studies have revealed several neuroprotective roles of DJ-1, from which its ability to modulate signaling pathways seems to be of utmost importance for cell death regulation by DJ-1. Indeed, research on these topics has led to a higher number of publications disclosing a variety of mechanisms through which DJ-1 is able to modulate signaling pathways in distinct disease-related contexts. Thus, this graphical review presents the most relevant findings concerning the mechanisms through which DJ-1 exerts its regulatory activity on signaling cascades relevant for DJ-1 neuroprotective action, namely ERK1/2, PI3K/Akt, and ASK1 pathways, and Nrf2 and p53 transcription factors-related signaling. A greater focus was given to perform an overview of the research interests over the last years, especially in the most recent works, to highlight the current research lines in this topic, and point out future directions in the field. In addition, the impact of DJ-1 mutations causative of PD and the importance of the redox status of DJ-1's cysteine residues for the action of DJ-1 on signaling modulation was also addressed to uncover the potential pathological mechanisms associated with loss of DJ-1 native function.


Assuntos
Estresse Oxidativo , Doença de Parkinson , Morte Celular , Humanos , Doença de Parkinson/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Desglicase DJ-1/genética , Proteína Desglicase DJ-1/metabolismo , Transdução de Sinais
19.
J Extracell Biol ; 1(10): e65, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38939215

RESUMO

Mitochondrial and autophagy dysfunction are mechanisms proposed to be involved in the pathogenesis of several neurodegenerative diseases. Huntington's disease (HD) is a progressive neurodegenerative disorder associated with mutant Huntingtin-induced abnormalities in neuronal mitochondrial dynamics and quality control. Former studies suggest that the removal of defective mitochondria may be compromised in HD. Mitochondrial quality control (MQC) is a complex, well-orchestrated pathway that can be compromised through mitophagy dysregulation or impairment in the mitochondria-lysosomal axis. Another mitochondrial stress response is the generation of mitochondrial-derived vesicles that fuse with the endolysosomal system and form multivesicular bodies that are extruded from cells as extracellular vesicles (EVs). In this work, we aimed to study the presence of mitochondrial components in human EVs and the relation to the dysfunction of both mitochondria and the autophagy pathway. We comprehensively characterized the mitochondrial and autophagy alterations in premanifest and manifest HD carriers and performed a proteomic and genomic EVs profile. We observed that manifest HD patients exhibit mitochondrial and autophagy impairment associated with enhanced EVs release. Furthermore, we detected mitochondrial DNA and proteins in EVs released by HD cells and in neuronal-derived EVs including VDAC-1 and alpha and beta subunits of ATP synthase F1. HD-extracellular vesicles transport higher levels of mitochondrial genetic material in manifest HD patients, suggesting an alternative pathway for the secretion of reactive mitochondrial components. This study provides a novel framework connecting EVs enhanced release of mitochondrial components to mitochondrial and lysosomal dysfunction in HD.

20.
Front Plant Sci ; 12: 668064, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34046053

RESUMO

The pinewood nematode (PWN), Bursaphelenchus xylophilus, the pine wilt disease's (PWD) causal agent, is a migratory endoparasitic nematode skilled to feed on pine tissues and on fungi that colonize the trees. In order to study B. xylophilus secretomes under the stimulus of pine species with different susceptibilities to disease, nematodes were exposed to aqueous pine extracts from Pinus pinaster (high-susceptible host) and P. pinea (low-susceptible host). Sequential windowed acquisition of all theoretical mass spectra (SWATH-MS) was used to determine relative changes in protein amounts between B. xylophilus secretions, and a total of 776 secreted proteins were quantified in both secretomes. From these, 22 proteins were found increased in the B. xylophilus secretome under the P. pinaster stimulus and 501 proteins increased under the P. pinea stimulus. Functional analyses of the 22 proteins found increased in the P. pinaster stimulus showed that proteins with peptidase, hydrolase, and antioxidant activities were the most represented. On the other hand, gene ontology (GO) enrichment analysis of the 501 proteins increased under the P. pinea stimulus revealed an enrichment of proteins with binding activity. The differences detected in the secretomes highlighted the diverse responses from the nematode to overcome host defenses with different susceptibilities and provide new clues on the mechanism behind the pathogenicity of this plant-parasitic nematode. Proteomic data are available via ProteomeXchange with identifier PXD024011.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA