Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(11)2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32516948

RESUMO

Over the past decades, numerous efforts were made towards the improvement of cereal crops mostly employing traditional or molecular breeding approaches. The current scenario made it possible to efficiently explore molecular understanding by targeting different genes to achieve desirable plants. To provide guaranteed food security for the rising world population particularly under vulnerable climatic condition, development of high yielding stress tolerant crops is needed. In this regard, technologies upgradation in the field of genome editing looks promising. Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 is a rapidly growing genome editing technique being effectively applied in different organisms, that includes both model and crop plants. In recent times CRISPR/Cas9 is being considered as a technology which revolutionized fundamental as well as applied research in plant breeding. Genome editing using CRISPR/Cas9 system has been successfully demonstrated in many cereal crops including rice, wheat, maize, and barley. Availability of whole genome sequence information for number of crops along with the advancement in genome-editing techniques provides several possibilities to achieve desirable traits. In this review, the options available for crop improvement by implementing CRISPR/Cas9 based genome-editing techniques with special emphasis on cereal crops have been summarized. Recent advances providing opportunities to simultaneously edit many target genes were also discussed. The review also addressed recent advancements enabling precise base editing and gene expression modifications. In addition, the article also highlighted limitations such as transformation efficiency, specific promoters and most importantly the ethical and regulatory issues related to commercial release of novel crop varieties developed through genome editing.


Assuntos
Grão Comestível/genética , Edição de Genes , Genoma de Planta , Genômica , Sistemas CRISPR-Cas , Produtos Agrícolas/genética , Genômica/métodos , Plantas Geneticamente Modificadas , Estresse Fisiológico , Transformação Genética
2.
3 Biotech ; 9(4): 143, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30944790

RESUMO

Tomato (Solanum lycopersicum) is one of the most important vegetable crops; its production, productivity and quality are adversely affected by abiotic stresses. Abiotic stresses such as drought, extreme temperature and high salinity affect almost every stage of tomato life cycle. Depending upon the plant stage and duration of the stress, abiotic stress causes about 70% yield loss. Several wild tomato species have the stress tolerance genes; however, it is very difficult to transfer them into cultivars due to high genetic distance and crossing barriers. Transgenic technology is an alternative potential tool for the improvement of tomato crop to cope with abiotic stress, as it allows gene transfer across species. In recent decades, many transgenic tomatoes have been developed, and many more are under progress against abiotic stress using transgenes such as DREBs, Osmotin, ZAT12 and BADH2. The altered expression of these transgenes under abiotic stresses are involved in every step of stress responses, such as signaling, control of transcription, proteins and membrane protection, compatible solute (betaines, sugars, polyols, and amino acids) synthesis, and free-radical and toxic-compound scavenging. The stress-tolerant transgenic tomato development is based on introgression of a gene with known function in stress response and putative tolerance. Transgenic tomato plants have been developed against drought, heat and salt stress with the help of various transgenes, expression of which manages the stress at the cellular level by modulating the expression of downstream genes to ultimately improve growth and yield of tomato plants and help in sustainable agricultural production. The transgenic technology could be a faster way towards tomato improvement against abiotic stress. This review provides comprehensive information about transgenic tomato development against abiotic stress such as drought, heat and salinity for researcher attention and a better understanding of transgenic technology used in tomato improvement and sustainable agricultural production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA