Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Cardiovasc Electrophysiol ; 34(8): 1698-1705, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37493499

RESUMO

INTRODUCTION: Among patients with non-valvular atrial fibrillation (AF) and percutaneous left atrial appendage closure (LAAC) undergoing direct current cardioversion (DCCV), the need for and use of LAA imaging and oral anticoagulation (OAC) is unclear. OBJECTIVE: The purpose of this study is to evaluate the real-world use of transesophageal echocardiography (TEE) or cardiac computed tomography angiography (CCTA) before DCCV and use of OAC pre- and post-DCCV in patients with AF status post percutaneous LAAC. METHODS: This retrospective single center study included all patients who underwent DCCV after percutaneous LAAC from 2016 to 2022. Key measures were completion of TEE or CCTA pre-DCCV, OAC use pre- and post-DCCV, incidence of left atrial thrombus (LAT) or device-related thrombus (DRT), incidence of peri-device leak (PDL), and DCCV-related complications (stroke, systemic embolism, device embolization, major bleeding, or death) within 30 days. RESULTS: A total of 76 patients with AF and LAAC underwent 122 cases of DCCV. LAAC consisted of 47 (62%), 28 (37%), and 1 (1%) case of Watchman 2.5, Watchman FLX, and Lariat, respectively. Among the 122 DCCV cases, 31 (25%) cases were identified as "non-guideline based" due to: (1) no OAC for 3 weeks and no LAA imaging within 48 h before DCCV in 12 (10%) cases, (2) no OAC for 4 weeks following DCCV in 16 (13%) cases, or (3) both in 3 (2%) cases. Among the 70 (57%) cases that underwent TEE or CCTA before DCCV, 16 (23%) cases had a PDL with a mean size of 3.0 ± 1.1 mm, and 4 (6%) cases had a LAT/DRT on TEE resulting in cancellation. There were no DCCV-related complications within 30 days. DISCUSSION: There is a widely varied practice pattern of TEE, CCTA, and OAC use with DCCV after LAAC, with a 6% rate of LAT/DRT. LAA imaging before DCCV appears prudent in all cases, especially within 1 year of LAAC, to assess for device position, PDL, and LAT/DRT.


Assuntos
Apêndice Atrial , Fibrilação Atrial , Cardiopatias , Acidente Vascular Cerebral , Trombose , Humanos , Estudos Retrospectivos , Cardioversão Elétrica/efeitos adversos , Apêndice Atrial/diagnóstico por imagem , Trombose/diagnóstico por imagem , Trombose/etiologia , Trombose/prevenção & controle , Fibrilação Atrial/diagnóstico por imagem , Fibrilação Atrial/terapia , Ecocardiografia Transesofagiana , Resultado do Tratamento , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/prevenção & controle , Cateterismo Cardíaco/efeitos adversos
2.
PLoS Comput Biol ; 18(10): e1010277, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36190991

RESUMO

Over the past decade, much of the development of computational models of device-related thrombosis has focused on platelet activity. While those models have been successful in predicting thrombus formation in medical devices operating at high shear rates (> 5000 s-1), they cannot be directly applied to low-shear devices, such as blood oxygenators and catheters, where emerging information suggest that fibrin formation is the predominant mechanism of clotting and platelet activity plays a secondary role. In the current work, we augment an existing platelet-based model of thrombosis with a partial model of the coagulation cascade that includes contact activation of factor XII and fibrin production. To calibrate the model, we simulate a backward-facing-step flow channel that has been extensively characterized in-vitro. Next, we perform blood perfusion experiments through a microfluidic chamber mimicking a hollow fiber membrane oxygenator and validate the model against these observations. The simulation results closely match the time evolution of the thrombus height and length in the backward-facing-step experiment. Application of the model to the microfluidic hollow fiber bundle chamber capture both gross features such as the increasing clotting trend towards the outlet of the chamber, as well as finer local features such as the structure of fibrin around individual hollow fibers. Our results are in line with recent findings that suggest fibrin production, through contact activation of factor XII, drives the thrombus formation in medical devices operating at low shear rates with large surface area to volume ratios.


Assuntos
Fibrina , Trombose , Coagulação Sanguínea , Plaquetas , Fator XII , Humanos
3.
Artif Organs ; 47(10): 1604-1612, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37306077

RESUMO

OBJECTIVE: The INTERMACS Events data set contains an expansive collection of temporal evidence of the course of adverse events (AEs) of >15 000 patients that have received a left ventricular assist device (LVAD). The chronology of AEs may contain insightful information of the "AE journeys" of LVAD patients. The purpose of this study is to investigate the timelines of AEs within the INTERMACS database. METHODS: Descriptive statistics were applied to 86 912 recorded AEs of 15 820 patients with a continuous flow-LVAD between 2008 to 2016, extracted from INTERMACS registry. The characteristics of the timelines of AE journeys were investigated by posing six descriptive research questions. RESULTS: The analysis revealed several time-related characteristics and patterns of the AE journey after LVAD including the most common time of occurrences of AEs after surgery, duration of AEs journeys, the time of first and last AEs, and the time gaps between AEs. CONCLUSION: The INTERMACS Event dataset is a valuable resource for research about the timeline of AE journeys of patients who received an LVAD. It is necessary for future studies to first explore and consider the time-related characteristics of the data set such as diversity and sparsity to effectively choose an appropriate scope of time and time granularity and to acknowledge potential challenges.


Assuntos
Insuficiência Cardíaca , Coração Auxiliar , Humanos , Coração Auxiliar/efeitos adversos , Insuficiência Cardíaca/cirurgia , Insuficiência Cardíaca/etiologia , Sistema de Registros , Bases de Dados Factuais , Estudos Retrospectivos , Resultado do Tratamento
4.
Artif Organs ; 47(3): 490-501, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36420933

RESUMO

BACKGROUND: Continuous-flow ventricular assist devices (cfVADs) are implanted in patients with end-stage heart failure to assist with blood circulation. However, VAD implantation is associated with dangerous thrombotic complications. Our goal was to determine the impact of micron and sub-micron scale Ti6Al4V surface roughness on adherent platelet aggregate properties under clinically relevant shear rates. METHODS: We used fluorescence microscopy to visualize platelets in real time as they adhered to Ti6Al4V coupons of varying degrees of roughness, including a smooth control, in microfluidic channels and quantified deposition using an image processing algorithm. We systematically characterized roughness using spatial frequencies to generalize results for more blood-biomaterial contact applications. RESULTS: We observed that on the control and sub-micron rough surfaces, at 1000 s-1 , platelets adhered uniformly on the surface. At 2000 s-1 , we observed small and stably adherent platelet aggregates. At 5500 s-1 , platelet aggregates were large, unstable and interconnected via fibrillar structures. On a surface with micron-scale roughness features, at all three shear rates, platelets deposited in the troughs of the roughened surface, and formed aggregates. Thrombus height at 2000 s-1 and 5500 s-1 was greatest on the roughest surface and lowest on the mirror-finished surface, as indicated by the mean fluorescence intensity. CONCLUSIONS: These results demonstrated that at high shear rates, thrombi form regardless of surface topography at the scales applied. At lower shear rates, micron-scale surface features cause thrombus formation, whereas submicron features result in innocuous platelet adhesion. These findings have implications for manufacturing costs and other considerations.


Assuntos
Trombose , Titânio , Humanos , Titânio/química , Propriedades de Superfície , Plaquetas , Ligas
5.
Biophys J ; 121(21): 4033-4047, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36196057

RESUMO

Thrombosis under high-shear conditions is mediated by the mechanosensitive blood glycoprotein von Willebrand factor (vWF). vWF unfolds in response to strong flow gradients and facilitates rapid recruitment of platelets in flowing blood. While the thrombogenic effect of vWF is well recognized, its conformational response in complex flows has largely been omitted from numerical models of thrombosis. We recently presented a continuum model for the unfolding of vWF, where we represented vWF transport and its flow-induced conformational change using convection-diffusion-reaction equations. Here, we incorporate the vWF component into our multi-constituent model of thrombosis, where the local concentration of stretched vWF amplifies the deposition rate of free-flowing platelets and reduces the shear cleaning of deposited platelets. We validate the model using three benchmarks: in vitro model of atherothrombosis, a stagnation point flow, and the PFA-100, a clinical blood test commonly used for screening for von Willebrand disease (vWD). The simulations reproduced the key aspects of vWF-mediated thrombosis observed in these experiments, such as the thrombus location, thrombus growth dynamics, and the effect of blocking platelet-vWF interactions. The PFA-100 simulations closely matched the reported occlusion times for normal blood and several hemostatic deficiencies, namely, thrombocytopenia, vWD type 1, and vWD type 3. Overall, this multi-constituent model of thrombosis enables macro-scale 3D simulations of thrombus formation in complex geometries over a wide range of shear rates and accounts for qualitative and quantitative hemostatic deficiencies in patient blood.


Assuntos
Hemostáticos , Trombose , Doenças de von Willebrand , Humanos , Plaquetas/fisiologia , Doenças de von Willebrand/diagnóstico , Fator de von Willebrand , Desdobramento de Proteína
6.
Artif Organs ; 45(9): 1014-1023, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33683718

RESUMO

As pump thrombosis is reduced in current-generation ventricular assist devices (VAD), adverse events such as bleeding or stroke remain at unacceptable rates. Thrombosis around the VAD inlet cannula (IC) has been highlighted as a possible source of stroke events. Recent computational fluid dynamics (CFD) studies have attempted to characterize the thrombosis risk of different IC-ventricle configurations. However, purely CFD simulations relate thrombosis risk to ad hoc criteria based on flow characteristics, with little consideration of biochemical factors. This study investigates the genesis of IC thrombosis including two elements of the Virchow's triad: endothelial injury and hypercoagulability. To this end a multi-scale thrombosis simulation that includes platelet activity and coagulation reactions was performed. Our results show significant thrombin formation in stagnation regions (|u| < 0.005 m/s) close to the IC wall. In addition, high shear-mediated platelet activation was observed over the leading-edge tip of the cannula. The current study reveals the importance of biochemical factors to the genesis of thrombosis at the ventricular-cannula junction in a perioperative state. This study is a first step toward the long-term objective of including clinically relevant pharmacological kinetics such as heparin or aspirin in simulations of inflow cannula thrombosis.


Assuntos
Simulação por Computador , Coração Auxiliar/efeitos adversos , Modelos Cardiovasculares , Trombose/etiologia , Coagulação Sanguínea , Cânula/efeitos adversos , Hemodinâmica/fisiologia , Humanos , Hidrodinâmica , Ativação Plaquetária
7.
Eur Respir J ; 56(2)2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32366491

RESUMO

BACKGROUND: Current risk stratification tools in pulmonary arterial hypertension (PAH) are limited in their discriminatory abilities, partly due to the assumption that prognostic clinical variables have an independent and linear relationship to clinical outcomes. We sought to demonstrate the utility of Bayesian network-based machine learning in enhancing the predictive ability of an existing state-of-the-art risk stratification tool, REVEAL 2.0. METHODS: We derived a tree-augmented naïve Bayes model (titled PHORA) to predict 1-year survival in PAH patients included in the REVEAL registry, using the same variables and cut-points found in REVEAL 2.0. PHORA models were validated internally (within the REVEAL registry) and externally (in the COMPERA and PHSANZ registries). Patients were classified as low-, intermediate- and high-risk (<5%, 5-20% and >10% 12-month mortality, respectively) based on the 2015 European Society of Cardiology/European Respiratory Society guidelines. RESULTS: PHORA had an area under the curve (AUC) of 0.80 for predicting 1-year survival, which was an improvement over REVEAL 2.0 (AUC 0.76). When validated in the COMPERA and PHSANZ registries, PHORA demonstrated an AUC of 0.74 and 0.80, respectively. 1-year survival rates predicted by PHORA were greater for patients with lower risk scores and poorer for those with higher risk scores (p<0.001), with excellent separation between low-, intermediate- and high-risk groups in all three registries. CONCLUSION: Our Bayesian network-derived risk prediction model, PHORA, demonstrated an improvement in discrimination over existing models. This is reflective of the ability of Bayesian network-based models to account for the interrelationships between clinical variables on outcome, and tolerance to missing data elements when calculating predictions.


Assuntos
Hipertensão Arterial Pulmonar , Teorema de Bayes , Hipertensão Pulmonar Primária Familiar , Humanos , Sistema de Registros , Medição de Risco
8.
Artif Organs ; 44(11): E459-E469, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32530104

RESUMO

Biocompatibility of ventricular assist devices (VADs) has been steadily improving, yet the rate of neurological events remains unacceptably high. Recent speculation for elevated stroke rates centers on ingestion of thrombi originating upstream of the pump, such as in the ventricle or left atrial appendage. These thrombi may be ejected by the VAD or become deposited within the blood flow pathway, presenting serious complications to the patient. This study was performed to visualize and quantify the degree of disruption, adherence, and disintegration of thrombi that are ingested by the three most implanted VADs: the HeartMate II, HeartMate 3, and HVAD. Clot analogs of varying microstructure compositions (red, white) and sizes (0.5, 1, 2 cm3 ) were synthesized in vitro based on clinical explant data. These were introduced individually into an in vitro flow loop with a transparent replica of the HMII, HM3, and HVAD operated at nominal steady flow (2.3-4.0 L/min). High-speed videography (up to 10 000 fps) revealed the ingestion, disruption, ejection, and adherence of thrombus fragments. Thromboemboli of varying compositions and sizes were observed mechanically attaching to components in all 3 VAD models. In some instances, ingested thrombi physically obstructed portions of the blood flow path; 18% (3 of 17 total) of red thrombi adhered to the inflow straightener of the transparent HMII. In the HVAD model, fewer than 4% of clots were adherent or trapped within the pump, irrespective of microstructure or initial volume. In comparison, 100% (4 of 4 total) of 1-cm3 white (fibrin) clots became lodged within the transparent HM3 while, in contrast, less than 5% of macerated red clots (3 of 63 total) of the same volume were adherent inside the pump. A significant proportion of ingested thrombi were macerated into infinitesimal fragments; 84% and 74% of 2-cm3 red thrombi in the HVAD and HM3 models, respectively, were found to have disintegrated upon ingestion. However, large emboli were also discharged from both centrifugal VADs; these fragments, ranging from 0.01 to 0.29 cm3 regardless of microstructure and original volume, may be capable of occluding an intracranial vessel. Therefore, ingested thrombus may explain, in part, elevated stroke rates in contemporary blood pumps in the absence of adherent pump thrombosis.


Assuntos
Coração Auxiliar/efeitos adversos , Trombose/etiologia , Materiais Biocompatíveis/efeitos adversos , Circulação Sanguínea , Desenho de Equipamento , Humanos , Trombose/fisiopatologia
9.
Int J Eng Sci ; 1472020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34565829

RESUMO

This study was undertaken to develop a numerical/computational simulation of von Willebrand Factor (vWF) - mediated platelet shear activation and deposition in an idealized stenosis. Blood is treated as a multi-constituent mixture comprised of a linear fluid component and a porous solid component (thrombus). Chemical and biological species involved in coagulation are modeled using a system of coupled convection-reaction-diffusion (CRD) equations. This study considers the cumulative effect of shear stress (history) on platelet activation. The vWF activity is modeled as an enhancement function for the shear stress accumulation and is related to the experimentally-observed unfolding rate of vWF. A series of simulations were performed in an idealized stenosis in which the predicted platelets deposition agreed well with previous experimental observations spatially and temporally, including the reduction of platelet deposition with decreasing expansion angle. Further simulation indicated a direct relationship between vWF-mediated platelet deposition and degree of stenosis. Based on the success with these benchmark simulations, it is hoped that the model presented here may provide additional insight into vWF-mediated thrombosis and prove useful for the development of more hemo-compatible blood-wetted devices in the future.

10.
J Comput Appl Math ; 3762020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34703076

RESUMO

In this paper, we numerically simulate the flow of blood in two benchmark problems: the flow in a sudden expansion channel and the flow through an idealized curved coronary artery with pulsatile inlet velocity. Blood is modeled as a suspension (a non-linear complex fluid) and the movement of the red blood cell (RBCs) is modeled by using a concentration flux equation. The viscosity of blood is obtained from experimental data. In the sudden expansion flow, the predicted velocity profiles for two different Reynolds numbers (based on the inlet velocity) agree well with the available experiments; furthermore, the numerical results also show that after the sudden expansion there exists a RBCs depletion region. For the second problem, the idealized curved coronary artery, it is found that the RBCs move towards and concentrate near the inner surface where the viscosity is higher and the shear stress lower; this phenomenon may be related to the atherosclerotic plaque formation which usually occurs on the inside surface of the arteries.

11.
Int J Non Linear Mech ; 109: 32-39, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31447489

RESUMO

Motivated by the complex rheological behaviors observed in small/micro scale blood vessels, such as the Fahraeus effect, plasma-skimming, shear-thinning, etc., we develop a non-linear suspension model for blood. The viscosity is assumed to depend on the volume fraction (hematocrit) and the shear rate. The migration of the red blood cells (RBCs) is studied using a concentration flux equation. A parametric study with two representative problems, namely simple shear flow and a pressure driven flow demonstrate the ability of this reduced-order model to reproduce several key features of the two-fluid model (mixture theory approach), with much lower computational cost.

12.
J Intensive Care Med ; 32(4): 292-296, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28421895

RESUMO

BACKGROUND: Spontaneous pneumothorax (SP) is uncommon and can present as a primary disease process or as a result of underlying lung pathology. Several parenchymal lung diseases, such as malignancy, are known to cause SP. One such malignancy, angiosarcoma, has a high propensity to metastasize to the lung and present as cavitary and cystic lesions. CASE: We present a case of a 76-year-old male diagnosed with angiosarcoma of the scalp that was found to have extensive cystic pulmonary metastatic lesions. Soon after his initial diagnosis, he presented with severe respiratory distress secondary to a spontaneous left-sided pneumothorax. After intubation and left-sided chest tube placement, the patient developed a right-sided tension pneumothorax requiring emergent chest tube placement. CONCLUSION: Cutaneous angiosarcoma is a rare malignancy that frequently metastasizes the lung. Spontaneous pneumothorax can be the presenting manifestation of the disease and often results in respiratory failure.


Assuntos
Hemangiossarcoma/patologia , Neoplasias Pulmonares/secundário , Pneumotórax/diagnóstico por imagem , Insuficiência Respiratória/terapia , Couro Cabeludo/patologia , Neoplasias Cutâneas/patologia , Tomografia Computadorizada por Raios X , Idoso , Hemangiossarcoma/diagnóstico por imagem , Hemangiossarcoma/terapia , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/terapia , Masculino , Conforto do Paciente , Pneumotórax/terapia , Neoplasias Cutâneas/terapia
13.
Artif Organs ; 40(11): 1071-1078, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26713514

RESUMO

Taylor vortices in a miniature mixed-flow rotodynamic blood pump were investigated using micro-scale particle image velocimetry (µ-PIV) and a tracer particle visualization technique. The pump featured a cylindrical rotor (14.9 mm diameter) within a cylindrical bore, having a radial clearance of 500 µm and operated at rotational speeds varying from 1000 to 12 000 rpm. Corresponding Taylor numbers were 700-101 800, respectively. The critical Taylor number was observed to be highly dependent on the ratio of axial to circumferential velocity, increasing from 1200 to 18 000 corresponding to Rossby numbers from 0 to 0.175. This demonstrated a dramatic stabilizing effect of the axial flow. The size of Taylor vortices was also found to be inversely related to Rossby number. It is concluded that Taylor vortices can enhance the mixing in the annular gap and decrease the dwell time of blood cells in the high-shear-rate region, which has the potential to decrease hemolysis and platelet activation within the blood pump.


Assuntos
Desenho de Equipamento , Coração Auxiliar/efeitos adversos , Hidrodinâmica , Hemólise , Microfluídica , Modelos Cardiovasculares , Ativação Plaquetária , Reologia
14.
Surg Innov ; 23(1): 36-41, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25969434

RESUMO

Hemorrhage control during surgery remains a major clinical challenge for surgeons. Bleeding can affect the safety and efficacy of any surgical procedure. There are well-established methods to address this side-effect of surgery, but all current technologies require the surgeon to direct attention to hemostasis rather than the continuance of the procedure. We have developed a novel surgical method, titled aqueous immersion surgery (AIS), that is able to sustain a bloodless surgical field by providing a controlled hydraulic pressure (immersion pressure) on the bleeding site. Together with the replenishment of an immersion fluid (immersion flow rate), AIS maintains optical clarity of the surgical field. This numerical study was undertaken to investigate the influence of the rate exchange of the immersion fluid on the concentration of blood, hence optical clarity therein. A 3-dimensional multicomponent simulation was performed to evaluate the mixing of blood from an idealized arterial bleeding vessel under pulsatile conditions. With an increase in immersion pressure, bleeding was reduced and increased perfusion was observed. Additionally, the magnitude and direction of the flow field affected the deflection of the bleeding trajectory and, in turn, affected the removal rate of blood from the surgical field. For an idealized case, an optimal immersion flow rate was found for immersion pressures of 100 and 110 mm Hg. From this study, fluid dynamic guidelines are postulated to support future development of AIS.


Assuntos
Hemostasia Cirúrgica/instrumentação , Hemostasia Cirúrgica/métodos , Simulação por Computador , Desenho de Equipamento , Hemodinâmica , Humanos , Modelos Biológicos , Pressão
15.
ACM Trans Comput Hum Interact ; 2016: 4477-4488, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27833397

RESUMO

Clinical decision support tools (DSTs) are computational systems that aid healthcare decision-making. While effective in labs, almost all these systems failed when they moved into clinical practice. Healthcare researchers speculated it is most likely due to a lack of user-centered HCI considerations in the design of these systems. This paper describes a field study investigating how clinicians make a heart pump implant decision with a focus on how to best integrate an intelligent DST into their work process. Our findings reveal a lack of perceived need for and trust of machine intelligence, as well as many barriers to computer use at the point of clinical decision-making. These findings suggest an alternative perspective to the traditional use models, in which clinicians engage with DSTs at the point of making a decision. We identify situations across patients' healthcare trajectories when decision supports would help, and we discuss new forms it might take in these situations.

16.
Int J Eng Sci ; 95: 49-59, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26240438

RESUMO

It is known that in a vessel whose characteristic dimension (e.g., its diameter) is in the range of 20 to 500 microns, blood behaves as a non-Newtonian fluid, exhibiting complex phenomena, such as shear-thinning, stress relaxation, and also multi-component behaviors, such as the Fahraeus effect, plasma-skimming, etc. For describing these non-Newtonian and multi-component characteristics of blood, using the framework of mixture theory, a two-fluid model is applied, where the plasma is treated as a Newtonian fluid and the red blood cells (RBCs) are treated as shear-thinning fluid. A computational fluid dynamic (CFD) simulation incorporating the constitutive model was implemented using OpenFOAM® in which benchmark problems including a sudden expansion and various driven slots and crevices were studied numerically. The numerical results exhibited good agreement with the experimental observations with respect to both the velocity field and the volume fraction distribution of RBCs.

17.
Artif Organs ; 38(4): 316-26, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23889536

RESUMO

The clinical importance of pulsatility is a recurring topic of debate in mechanical circulatory support. Lack of pulsatility has been identified as a possible factor responsible for adverse events and has also demonstrated a role in myocardial perfusion and cardiac recovery. A commonly used method for restoring pulsatility with rotodynamic blood pumps (RBPs) is to modulate the speed profile, synchronized to the cardiac cycle. This introduces additional parameters that influence the (un)loading of the heart, including the timing (phase shift) between the native cardiac cycle and the pump pulses, and the amplitude of speed modulation. In this study, the impact of these parameters upon the heart-RBP interaction was examined in terms of the pressure head-flow (HQ) diagram. The measurements were conducted using a rotodynamic Deltastream DP2 pump in a validated hybrid mock circulation with baroreflex function. The pump was operated with a sinusoidal speed profile, synchronized to the native cardiac cycle. The simulated ventriculo-aortic cannulation showed that the level of (un)loading and the shape of the HQ loops strongly depend on the phase shift. The HQ loops displayed characteristic shapes depending on the phase shift. Increased contribution of native contraction (increased ventricular stroke work [WS ]) resulted in a broadening of the loops. It was found that the previously described linear relationship between WS and the area of the HQ loop for constant pump speeds becomes a family of linear relationships, whose slope depends on the phase shift.


Assuntos
Coração Auxiliar , Modelos Cardiovasculares , Desenho de Prótese , Fluxo Pulsátil , Hemodinâmica , Humanos , Pressão
18.
Int J Eng Sci ; 76: 56-72, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24791016

RESUMO

In this paper, we consider the two dimensional flow of blood in a rectangular microfluidic channel. We use Mixture Theory to treat this problem as a two-component system: One component is the red blood cells (RBCs) modeled as a generalized Reiner-Rivlin type fluid, which considers the effects of volume fraction (hematocrit) and influence of shear rate upon viscosity. The other component, plasma, is assumed to behave as a linear viscous fluid. A CFD solver based on OpenFOAM® was developed and employed to simulate a specific problem, namely blood flow in a two dimensional micro-channel, is studied. Finally to better understand this two-component flow system and the effects of the different parameters, the equations are made dimensionless and a parametric study is performed.

19.
ASAIO J ; 70(6): 495-501, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38346283

RESUMO

Previous predictive models for postimplant right heart failure (RHF) following left ventricular assist device (LVAD) implantation have demonstrated limited performance on validation datasets and are susceptible to overfitting. Thus, the objective of this study was to develop an improved predictive model with reduced overfitting and improved accuracy in predicting RHF in LVAD recipients. The study involved 11,967 patients who underwent continuous-flow LVAD implantation between 2008 and 2016, with an RHF incidence of 9% at 1 year. Using an eXtreme Gradient Boosting (XGBoost) algorithm, the training data were used to predict RHF at 1 year postimplantation, resulting in promising area under the curve (AUC)-receiver operating characteristic (ROC) of 0.8 and AUC-precision recall curve (PRC) of 0.24. The calibration plot showed that the predicted risk closely corresponded with the actual observed risk. However, the model based on data collected 48 hours before LVAD implantation exhibited high sensitivity but low precision, making it an excellent screening tool but not a diagnostic tool.


Assuntos
Insuficiência Cardíaca , Coração Auxiliar , Humanos , Coração Auxiliar/efeitos adversos , Insuficiência Cardíaca/cirurgia , Masculino , Feminino , Pessoa de Meia-Idade , Disfunção Ventricular Direita/etiologia , Disfunção Ventricular Direita/fisiopatologia , Adulto , Estudos Retrospectivos , Idoso
20.
Ann Biomed Eng ; 52(4): 1039-1050, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38319505

RESUMO

Our goal was to determine the impact of physiological and pathological shear histories on platelet nucleation and thrombus growth at various local shear rates. We designed and characterized a microfluidic device capable of subjecting platelets to shear histories reaching as high as 6700 s - 1 in a single passage. Time-lapse videos of platelets and thrombi are captured using fluorescence microscopy. Thrombi are tracked, and the degree of thrombosis is evaluated through surface coverage, platelet nucleation maps, and ensemble-averaged aggregate areas and intensities. Surface coverage rates were the lowest when platelets deposited at high shear rates following a pathological shear history and were highest at low shear rates following a pathological shear history. Early aggregate area growth rates were significantly larger for thrombi developing at high shear following physiological shear history than at high shear following a pathological shear history. Aggregate vertical growth was restricted when depositing at low shear following a pathological shear history. In contrast, thrombi grew faster vertically following physiological shear histories. These results show that physiological shear histories pose thrombotic risks via volumetric growth, and pathological shear histories drastically promote nucleation. These findings may inform region-based geometries for biomedical devices and refine thrombosis simulations.


Assuntos
Plaquetas , Trombose , Humanos , Plaquetas/fisiologia , Trombose/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA