Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 8(1): 73-9, 2012 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-22095923

RESUMO

Bottom-gate, top-contact organic thin-film transistors (TFTs) with excellent static characteristics (on/off ratio: 10(7) ; intrinsic mobility: 3 cm(2) (V s)(-1) ) and fast unipolar ring oscillators (signal delay as short as 230 ns per stage) are fabricated. The significant contribution of the transfer length to the relation between channel length, contact length, contact resistance, effective mobility, and cutoff frequency of the TFTs is theoretically and experimentally analyzed.

2.
Nano Lett ; 11(12): 5309-15, 2011 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-22029286

RESUMO

A novel approach for the fabrication of transistors and circuits based on individual single-crystalline ZnO nanowires synthesized by a low-temperature hydrothermal method is reported. The gate dielectric of these transistors is a self-assembled monolayer that has a thickness of 2 nm and efficiently isolates the ZnO nanowire from the top-gate electrodes. Inverters fabricated on a single ZnO nanowire operate with frequencies up to 1 MHz. Compared with metal-semiconductor field-effect transistors, in which the isolation of the gate electrode from the carrier channel relies solely on the depletion layer in the semiconductor, the self-assembled monolayer dielectric leads to a reduction of the gate current by more than 3 orders of magnitude.

3.
Nanotechnology ; 21(47): 475207, 2010 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-21030776

RESUMO

Nanoscale transistors employing an individual semiconducting carbon nanotube as the channel hold great potential for logic circuits with large integration densities that can be manufactured on glass or plastic substrates. Carbon nanotubes are usually produced as a mixture of semiconducting and metallic nanotubes. Since only semiconducting nanotubes yield transistors, the metallic nanotubes are typically not utilized. However, integrated circuits often require not only transistors, but also resistive load devices. Here we show that many of the metallic carbon nanotubes that are deposited on the substrate along with the semiconducting nanotubes can be conveniently utilized as load resistors with favorable characteristics for the design of integrated circuits. We also demonstrate the fabrication of arrays of transistors and resistors, each based on an individual semiconducting or metallic carbon nanotube, and their integration on glass substrates into logic circuits with switching frequencies of up to 500 kHz using a custom-designed metal interconnect layer.

6.
ACS Nano ; 8(7): 6840-8, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-24940627

RESUMO

A method for the formation of a low-temperature hybrid gate dielectric for high-performance, top-gate ZnO nanowire transistors is reported. The hybrid gate dielectric consists of a self-assembled monolayer (SAM) and an aluminum oxide layer. The thin aluminum oxide layer forms naturally and spontaneously when the aluminum gate electrode is deposited by thermal evaporation onto the SAM-covered ZnO nanowire, and its formation is facilitated by the poor surface wetting of the aluminum on the hydrophobic SAM. The hybrid gate dielectric shows excellent electrical insulation and can sustain voltages up to 6 V. ZnO nanowire transistors utilizing the hybrid gate dielectric feature a large transconductance of 50 µS and large on-state currents of up to 200 µA at gate-source voltages of 3 V. The large on-state current is sufficient to drive organic light-emitting diodes with an active area of 6.7 mm(2) to a brightness of 445 cd/m(2). Inverters based on ZnO nanowire transistors and thin-film carbon load resistors operate with frequencies up to 30 MHz.

7.
ACS Nano ; 6(3): 2853-9, 2012 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-22385160

RESUMO

Nanoscale metal-insulator-metal (MIM) diodes represent important devices in the fields of electronic circuits, detectors, communication, and energy, as their cutoff frequencies may extend into the "gap" between the electronic microwave range and the optical long-wave infrared regime. In this paper, we present a nanotransfer printing method, which allows the efficient and simultaneous fabrication of large-scale arrays of MIM nanodiode stacks, thus offering the possibility of low-cost mass production. In previous work, we have demonstrated the successful transfer and electrical characterization of macroscopic structures. Here, we demonstrate for the first time the fabrication of several millions of nanoscale diodes with a single transfer-printing step using a temperature-enhanced process. The electrical characterization of individual MIM nanodiodes was performed using a conductive atomic force microscope (AFM) setup. Our analysis shows that the tunneling current is the dominant conduction mechanism, and the electrical measurement data agree well with experimental data on previously fabricated microscale diodes and numerical simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA