Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Semin Cell Dev Biol ; 129: 126-134, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35260295

RESUMO

Cell-cell communications are central to a variety of physiological and pathological processes in multicellular organisms. Cells often rely on cellular protrusions to communicate with one another, which enable highly selective and efficient signaling within complex tissues. Owing to significant improvements in imaging techniques, identification of signaling protrusions has increased in recent years. These protrusions are structurally specialized for signaling and facilitate interactions between cells. Therefore, physical regulation of these structures must be key for the appropriate strength and pattern of signaling outcomes. However, the typical approaches for understanding signaling regulation tend to focus solely on changes in signaling molecules, such as gene expression, protein-protein interaction, and degradation. In this short review, we summarize the studies proposing the removal of different types of signaling protrusions-including cilia, neurites, MT (microtubule based)-nanotubes and microvilli-and discuss their mechanisms and significance in signaling regulation.


Assuntos
Comunicação Celular , Extensões da Superfície Celular , Extensões da Superfície Celular/metabolismo , Microtúbulos/metabolismo , Neuritos , Transdução de Sinais
2.
PLoS Biol ; 18(12): e3001003, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33315855

RESUMO

Stem-cell niche signaling is short-range in nature, such that only stem cells but not their differentiating progeny receive self-renewing signals. At the apical tip of the Drosophila testis, 8 to 10 germline stem cells (GSCs) surround the hub, a cluster of somatic cells that organize the stem-cell niche. We have previously shown that GSCs form microtubule-based nanotubes (MT-nanotubes) that project into the hub cells, serving as the platform for niche signal reception; this spatial arrangement ensures the reception of the niche signal specifically by stem cells but not by differentiating cells. The receptor Thickveins (Tkv) is expressed by GSCs and localizes to the surface of MT-nanotubes, where it receives the hub-derived ligand Decapentaplegic (Dpp). The fate of Tkv receptor after engaging in signaling on the MT-nanotubes has been unclear. Here we demonstrate that the Tkv receptor is internalized into hub cells from the MT-nanotube surface and subsequently degraded in the hub cell lysosomes. Perturbation of MT-nanotube formation and Tkv internalization from MT-nanotubes into hub cells both resulted in an overabundance of Tkv protein in GSCs and hyperactivation of a downstream signal, suggesting that the MT-nanotubes also serve a second purpose to dampen the niche signaling. Together, our results demonstrate that MT-nanotubes play dual roles to ensure the short-range nature of niche signaling by (1) providing an exclusive interface for the niche ligand-receptor interaction; and (2) limiting the amount of stem cell receptors available for niche signal reception.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/fisiologia , Nicho de Células-Tronco/fisiologia , Células-Tronco/metabolismo , Células-Tronco Germinativas Adultas/metabolismo , Células-Tronco Germinativas Adultas/fisiologia , Animais , Diferenciação Celular/fisiologia , Drosophila melanogaster/metabolismo , Células Germinativas/citologia , Células Germinativas/metabolismo , Ligantes , Masculino , Microtúbulos/metabolismo , Microtúbulos/fisiologia , Transdução de Sinais/fisiologia , Células-Tronco/citologia , Testículo/metabolismo
3.
Nat Commun ; 15(1): 1166, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326318

RESUMO

Drosophila male germline stem cells (GSCs) reside at the tip of the testis and surround a cluster of niche cells. Decapentaplegic (Dpp) is one of the well-established ligands and has a major role in maintaining stem cells located in close proximity. However, the existence and the role of the diffusible fraction of Dpp outside of the niche have been unclear. Here, using genetically-encoded nanobodies called Morphotraps, we physically block Dpp diffusion without interfering with niche-stem cell signaling and find that a diffusible fraction of Dpp is required to ensure differentiation of GSC daughter cells, opposite of its role in maintenance of GSC in the niche. Our work provides an example in which a soluble niche ligand induces opposed cellular responses in stem cells versus in differentiating descendants to ensure spatial control of the niche. This may be a common mechanism to regulate tissue homeostasis.


Assuntos
Proteínas de Drosophila , Animais , Masculino , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ligantes , Diferenciação Celular/fisiologia , Drosophila/metabolismo , Transdução de Sinais/fisiologia , Nicho de Células-Tronco/fisiologia , Células Germinativas/metabolismo , Drosophila melanogaster/metabolismo
4.
Methods Mol Biol ; 2677: 127-138, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37464239

RESUMO

The Drosophila male germline provides a strong model system to understand numerous developmental and cell-biological processes, owing to a well-defined anatomy and cell type markers in combination with various genetic tools available for the Drosophila system. A major weakness of this system has been the difficulty of approaches for obtaining material for biochemical assays, proteomics, and genomic or transcriptomic profiling due to small-size and complex tissues. However, the recent development of techniques has started allowing us the usage of a low amount of material for these analyses and now we can strategize many new experiments. The method for enrichment or isolation of rare populations of cells is still challenging and should meaningfully influence the reliability of the results. Here, we provide our semi-optimized protocol of enrichment of undifferentiated germ cells and somatic cells from non-tumorous Drosophila testis, which we have successfully improved after multiple trials.


Assuntos
Proteínas de Drosophila , Testículo , Masculino , Animais , Testículo/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Reprodutibilidade dos Testes , Diferenciação Celular/genética , Células Germinativas/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo
5.
PLoS One ; 17(11): e0276704, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36342916

RESUMO

Microtubule acetylation is found in populations of stable, long-lived microtubules, occurring on the conserved lysine 40 (K40) residue of α-tubulin by α-tubulin acetyltransferases (αTATs). α-tubulin K40 acetylation has been shown to stabilize microtubules via enhancing microtubule resilience against mechanical stress. Here we show that a previously uncharacterized αTAT, Drosophila CG17003/leaky (lky), is required for α-tubulin K40 acetylation in early germ cells in Drosophila ovary. We found that loss of lky resulted in a progressive egg chamber fusion phenotype accompanied with mislocalization of germline-specific Vasa protein in somatic follicle cells. The same phenotype was observed upon replacement of endogenous α-tubulin84B with non-acetylatable α-tubulin84BK40A, suggesting α-tubulin K40 acetylation is responsible for the phenotype. Chemical disturbance of microtubules by Colcemid treatment resulted in a mislocalization of Vasa in follicle cells within a short period of time (~30 min), suggesting that the observed mislocalization is likely caused by direct leakage of cellular contents between germline and follicle cells. Taken together, this study provides a new function of α-tubulin acetylation in maintaining the cellular identity possibly by preventing the leakage of tissue-specific gene products between juxtaposing distinct cell types.


Assuntos
Drosophila , Tubulina (Proteína) , Animais , Feminino , Acetilação , Tubulina (Proteína)/metabolismo , Drosophila/metabolismo , Ovário/metabolismo , Microtúbulos/metabolismo , Células Germinativas/metabolismo
6.
Nat Commun ; 13(1): 3981, 2022 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-35810185

RESUMO

Pairing of homologous chromosomes in somatic cells provides the opportunity of interchromosomal interaction between homologous gene regions. In the Drosophila male germline, the Stat92E gene is highly expressed in a germline stem cell (GSC) and gradually downregulated during the differentiation. Here we show that the pairing of Stat92E is always tight in GSCs and immediately loosened in differentiating daughter cells, gonialblasts (GBs). Disturbance of Stat92E pairing by relocation of one locus to another chromosome or by knockdown of global pairing/anti-pairing factors both result in a failure of Stat92E downregulation, suggesting that the pairing is required for the decline in transcription. Furthermore, the Stat92E enhancer, but not its transcription, is required for the change in pairing state, indicating that pairing is not a consequence of transcriptional changes. Finally, we show that the change in Stat92E pairing is dependent on asymmetric histone inheritance during the asymmetric division of GSCs. Taken together, we propose that the changes in Stat92E pairing status is an intrinsically programmed mechanism for enabling prompt cell fate switch during the differentiation of stem cells.


Assuntos
Proteínas de Drosophila , Alelos , Animais , Diferenciação Celular/genética , Drosophila/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Células Germinativas
7.
Methods Mol Biol ; 2346: 79-90, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33460026

RESUMO

The Drosophila ovary is an exceptional model for studying cell-cell interactions in vivo. Cells communicate with each other in a highly coordinated manner. Accurate spatiotemporal regulation of cell-cell interaction is critical for the development of eggs. Ultrastructural analysis using electron microscopy (EM) permits the visualization of both cells and subcellular signaling structures with high resolution. Here we describe a method for the processing of intact fly ovaries by scanning electron microscopy (SEM).


Assuntos
Ovário/ultraestrutura , Animais , Comunicação Celular , Drosophila , Feminino , Ovário/citologia
8.
Cells ; 9(2)2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31979180

RESUMO

The Drosophila ovary offers a suitable model system to study the mechanisms that orchestrate diverse cellular processes. Oogenesis starts from asymmetric stem cell division, proper differentiation and the production of fully patterned oocytes equipped with all the maternal information required for embryogenesis. Spatial and temporal regulation of cell-cell interaction is particularly important to fulfill accurate biological outcomes at each step of oocyte development. Progress has been made in understanding diverse cell physiological regulation of signaling. Here we review the roles of specialized cellular machinery in cell-cell communication in different stages of oogenesis.


Assuntos
Comunicação Celular , Drosophila/citologia , Oócitos/citologia , Animais , Exocitose , Transdução de Sinais , Nicho de Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA