Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Front Immunol ; 15: 1382911, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38807606

RESUMO

Introduction: COVID-19 vaccines are highly effective in inducing protective immunity. While the serum antibody response to COVID-19 vaccination has been studied in depth, our knowledge of the underlying plasmablast and memory B cell (Bmem) responses is still incomplete. Here, we determined the antibody and B cell response to COVID-19 vaccination in a naïve population and contrasted it with the response to a single influenza vaccination in a primed cohort. In addition, we analyzed the antibody and B cell responses against the four endemic human coronaviruses (HCoVs). Methods: Measurement of specific plasma IgG antibodies was combined with functional analyses of antibody-secreting plasmablasts and Bmems. SARS-CoV-2- and HCoV-specific IgG antibodies were quantified with an in-house bead-based multiplexed immunoassay. Results: The antibody and B cell responses to COVID-19 vaccination reflected the kinetics of a prime-boost immunization, characterized by a slow and moderate primary response and a faster and stronger secondary response. In contrast, the influenza vaccinees possessed robust immune memory for the vaccine antigens prior to vaccination, and the recall vaccination moderately boosted antibody production and Bmem responses. Antibody levels and Bmem responses waned several months after the 2nd COVID-19 vaccination, but were restored upon the 3rd vaccination. The COVID-19 vaccine-induced antibodies mainly targeted novel, non-cross-reactive S1 epitopes of the viral spike protein, while cross-reactive S2 epitopes were less immunogenic. Booster vaccination not only strongly enhanced neutralizing antibodies against an original SARS-CoV-2 strain, but also induced neutralizing antibodies against the Omicron BA.2 variant. We observed a 100% plasma antibody prevalence against the S1 subunits of HCoVs, which was not affected by vaccination. Discussion: Overall, by complementing classical serology with a functional evaluation of plasmablasts and memory B cells we provide new insights into the specificity of COVID-19 vaccine-induced antibody and B cell responses.


Assuntos
Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Reações Cruzadas , Imunidade Humoral , Imunoglobulina G , Células B de Memória , Plasmócitos , SARS-CoV-2 , Humanos , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Células B de Memória/imunologia , SARS-CoV-2/imunologia , Vacinas contra COVID-19/imunologia , Masculino , Adulto , Reações Cruzadas/imunologia , Feminino , Plasmócitos/imunologia , Pessoa de Meia-Idade , Imunoglobulina G/imunologia , Imunoglobulina G/sangue , Vacinação , Vacinas contra Influenza/imunologia , Memória Imunológica/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Epitopos de Linfócito B/imunologia , Linfócitos B/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Cinética
2.
Am J Physiol Gastrointest Liver Physiol ; 304(7): G655-61, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23370673

RESUMO

Ferritin, a food constituent of animal and vegetal origin, is a source of dietary iron. Its hollow central cavity has the capacity to store up to 4,500 atoms of iron, so its potential as an iron donor is advantageous to heme iron, present in animal meats and inorganic iron of mineral or vegetal origin. In intestinal cells, ferritin internalization by endocytosis results in the release of its iron into the cytosolic labile iron pool. The aim of this study was to characterize the endocytic pathway of exogenous ferritin absorbed from the apical membrane of intestinal epithelium Caco-2 cells, using both transmission electron microscopy and fluorescence confocal microscopy. Confocal microscopy revealed that endocytosis of exogenous AlexaFluor 488-labeled ferritin was initiated by its engulfment by clathrin-coated pits and internalization into early endosomes, as determined by codistribution with clathrin and early endosome antigen 1 (EEA1). AlexaFluor 488-labeled ferritin also codistributed with the autophagosome marker microtubule-associated protein 1 light chain 3 (LC3) and the lysosome marker lysosomal-associated membrane protein 2 (LAMP2). Transmission electron microscopy revealed that exogenously added ferritin was captured in plasmalemmal pits, double-membrane compartments, and multivesicular bodies considered as autophagosomes and lysosomes. Biochemical experiments revealed that the lysosome inhibitor chloroquine and the autophagosome inhibitor 3-methyladenine (3-MA) inhibited degradation of exogenously added (131)I-labeled ferritin. This evidence is consistent with a model in which exogenous ferritin is internalized from the apical membrane through clathrin-coated pits, and then follows a degradation pathway consisting of the passage through early endosomes, autophagosomes, and autolysosomes.


Assuntos
Ferritinas/metabolismo , Mucosa Intestinal/metabolismo , Ferro/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Autofagia , Células CACO-2 , Invaginações Revestidas da Membrana Celular/metabolismo , Endocitose , Humanos , Lisossomos/metabolismo , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Proteínas de Transporte Vesicular/metabolismo
3.
Exp Biol Med (Maywood) ; 246(9): 1112-1120, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33641440

RESUMO

The Wnt signaling pathway regulates physiological processes such as cell proliferation and differentiation, cell fate decisions, and stem cell maintenance and, thus, plays essential roles in embryonic development, but also in adult tissue homeostasis and repair. The Wnt signaling pathway has been associated with heart development and repair and has been shown to be crucially involved in proliferation and differentiation of progenitor cells into cardiomyocytes. The investigation of the role of the Wnt signaling pathway and the regulation of its expression/activity in atrial fibrillation has only just begun. The present minireview (I) provides original data regarding the expression of Wnt signaling components in atrial tissue of patients with atrial fibrillation or sinus rhythm and (II) summarizes the current state of knowledge of the regulation of Wnt signaling components' expression/activity and the contribution of the various levels of the Wnt signal transduction pathway to the processes of the development, maintenance, and progression of atrial fibrillation.


Assuntos
Fibrilação Atrial/fisiopatologia , Via de Sinalização Wnt/fisiologia , Animais , Humanos
4.
Oncol Rep ; 19(6): 1597-603, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18497971

RESUMO

A cyclic peptide derived from the active domain of alpha-fetoprotein (AFP) significantly inhibited the proliferation of MCF7 cells stimulated with the epidermal growth factor (EGF) or estradiol (E2). The action of these three agents on cell growth was independent of the presence of calf serum in the culture medium. Our results demonstrated that the cyclic peptide interfered markedly with the regulation of MAPK by activated c-erbB2. The cyclic peptide showed no effect on the E2-stimulated release of matrix metalloproteinases 2 and 9 nor on the shedding of heparin-binding EGF into the culture medium. We propose that the AFP-derived cyclic peptide represents a valuable novel antiproliferative agent for treating breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Proliferação de Células , Fator de Crescimento Epidérmico/farmacologia , Estradiol/farmacologia , Peptídeos Cíclicos/metabolismo , alfa-Fetoproteínas/metabolismo , Western Blotting , Neoplasias da Mama/patologia , Estrogênios/farmacologia , Feminino , Imunofluorescência , Humanos , Metaloproteinases da Matriz/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Receptor ErbB-2/metabolismo , Células Tumorais Cultivadas
5.
Methods Mol Biol ; 1266: 199-215, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25560077

RESUMO

Metabolic labeling of proteins using classical radioisotope-labeled amino acids has enabled the analysis and function of protein synthesis for many biological processes but cannot be combined with modern high-throughput mass spectrometry analysis. This chapter describes the unbiased identification of a whole de novo synthesized proteome of cultured cells or of a translationally active subcellular fraction of the mammalian brain. This technique relies on the introduction of a small bioorthogonal reactive group by metabolic labeling accomplished by replacing the amino acid methionine by the azide-bearing methionine surrogate azidohomoalanine (AHA) or the amino acid homopropargylglycine (HPG). Subsequently an alkyne- or azide-bearing affinity tag is covalently attached to the group by "click chemistry"-a copper(I)-catalyzed [3+2] azide-alkyne cycloaddition. Affinity tag-labeled proteins can be analyzed in candidate-based approaches by conventional biochemical methods or with high-throughput mass spectrometry.


Assuntos
Proteoma/biossíntese , Alanina/análogos & derivados , Alanina/química , Alanina/metabolismo , Cromatografia de Afinidade , Química Click , Reação de Cicloadição , Células HEK293 , Humanos , Proteoma/química , Proteoma/isolamento & purificação , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA