RESUMO
This research delves into the intriguing realm of investigating the stability of vitamin B2 (riboflavin, Rf) on hexagonal boron nitride (h-BN), both in its pristine state and in the presence of vacancy defects, with the aim of harnessing their potential as carriers for drug delivery applications. Employing the density functional theory (DFT), we perform binding energy calculations and analyze the electronic structure of the BN@Rf system to unravel the nature of their interactions. Our comprehensive DFT calculations unequivocally demonstrate the spontaneous physical sorption of the drug onto the h-BN surface, facilitated by the formation of π-π stacking interactions. The adsorption energy spans a range from -1.15 to -4.00 eV per system, emphasizing the robust nature of the BN@Rf bonding. The results show that the HOMO and LUMO of riboflavin are located exactly in the region of the iso-alloxazine rings of riboflavin. This arrangement fosters the formation of π-π stacking between riboflavin and boron nitride, effectively facilitating the transfer of electron density within the BN@Rf system. Furthermore, our investigations reveal the significant impact of vacancy defects within the boron nitride lattice. These vacancies alter the behavior of the structure, prompting riboflavin to metamorphose from an electron donor to an electron acceptor, expanding our understanding of the interplay between boron nitride defects and riboflavin sorption. Therefore, it is imperative to exert meticulous oversight of the structural integrity of h-BN, given that the existence of vacancies may lead to a noticeable change in its adsorption properties. The obtained data could amplify our capacity to conceive and refine drug delivery h-BN-based systems.
Assuntos
Compostos de Boro , Sistemas de Liberação de Medicamentos , Adsorção , Compostos de Boro/química , RiboflavinaRESUMO
Increasing contamination of wastewater with antibiotics used in agriculture, animal husbandry, and medicine is a serious problem for all living things. To address this important issue, we have developed an efficient platform based on a high specific surface area hexagonal boron nitride (BN) coating formed by numerous nanopetals and nanoneedles. The maximum sorption capacity of 1 × 1 cm2 BN coatings is 502.78 µg/g (tetracycline, TET), 315.75 µg/g (ciprofloxacin, CIP), 400.17 µg/g (amoxicillin, AMOX), and 269.7 µg/g (amphotericin B, AMP), which exceeds the sorption capacity of many known materials. Unlike nanoparticles, BN-coated Si wafers are easy to place in and remove from antibiotic-contaminated aqueous solutions, and are easy to clean. When reusing the adsorbents, 100% efficiency was observed at the same time intervals as in the first cleaning cycle: 7 days (TET) and 14 days (CIP, AMOX, AMP) at 10 µg/mL, 14 days (TET, CIP, and AMOX) and 28 days (AMP) at 50 µg/mL, and 14 days (TET) and 28 days (CIP, AMOX and AMP) at 100 µg/mL. The results obtained showed that TET and CIP are best adsorbed on the surface of BN, so TET was chosen as an example for further theoretical modeling of the sorption process. It was found that adsorption is the main mechanism, and this process is spontaneous and endothermic. This highlights the importance of a high specific surface area for the efficient removal of antibiotics from aqueous solutions.
Assuntos
Poluentes Químicos da Água , Purificação da Água , Animais , Antibacterianos , Ciprofloxacina , Amoxicilina , Purificação da Água/métodos , Adsorção , Poluentes Químicos da Água/análiseRESUMO
Micromechanical exfoliation of two-dimensional (2D) van der Waals materials has triggered an explosive interest in 2D material research. The extension of this idea to 1D van der Waals materials, possibly opening a new arena for 1D material research, has not yet been realized. In this paper, we demonstrate that 1D nanowire with sizes as small as six molecular ribbons, can be readily achieved in the Ta2(Pd or Pt)3Se8 system by simple micromechanical exfoliation. Exfoliated Ta2Pd3Se8 nanowires are n-type semiconductors, whereas isostructural Ta2Pt3Se8 nanowires are p-type semiconductors. Both types of nanowires show excellent electrical switching performance as the channel material for a field-effect transistor. Low-temperature transport measurement reveals a defect level inherent to Ta2Pd3Se8 nanowires, which enables the observed electrical switching behavior at high temperature (above 140 K). A functional logic gate consisting of both n-type Ta2Pd3Se8 and p-type Ta2Pt3Se8 field-effect transistors has also been successfully achieved. By taking advantage of the high crystal quality derived from the parent van der Waals bulk compound, our findings about the exfoliated Ta2(Pd or Pt)3Se8 nanowires demonstrate a new pathway to access single-crystal 1D nanostructures for the study of their fundamental properties and the exploration of their applications in electronics, optoelectronics, and energy harvesting.
RESUMO
In this work, we studied the oxidation stability of h-BN by investigating different variants of its modification by -OH, -O- and -O-O- groups using an atomistic thermodynamics approach. We showed that up to temperatures of ~1700 K, oxygen is deposited on the surface of hexagonal boron nitride without dissociation, in the form of peroxide. Only at higher temperatures, oxygen tends to be incorporated into the lattice of hexagonal boron nitride, except in the presence of defects Nv, when the embedding occurs at all temperatures. Finally, the electronic and magnetic properties of the oxidized h-BN were studied.
RESUMO
Micron-sized supports of catalytically active nanoparticles (NPs) can become a good alternative to nanocarriers if their structure is properly tuned. Here, we show that a combination of simple and easily scalable methods, such as defect engineering and polyol synthesis, makes it possible to obtain Ag and MgO nanoparticles supported on defective hexagonal BN (h-BN) support with high catalytic activity in the CO oxidation reaction. High-temperature annealing in air of Mg-containing (<0.2 at.%) h-BN micropellets led to surface oxidation, the formation of hexagonal-shaped surface defects, and defect-related MgO NPs. The enhanced catalytic activity of Ag/MgO/h-BN materials is attributed to the synergistic effect of h-BN surface defects, ultrafine Ag and MgO NPs anchored at the defect edges, and MgO/Ag heterostructures. In addition, theoretical simulations show a shift in the electron density from metallic Ag towards MgO and the associated decrease in the negative charge of oxygen adsorbed on the Ag surface, which positively affects the catalytic activity of the Ag/MgO/h-BN material.
RESUMO
The constant accumulation of antibiotics and their degradation products in wastewater as a result of human activity poses a serious threat to humanity and other living beings. To contribute to solving this important problem, hollow hexagonal boron nitride nanoparticles (BNNPs) with a spherical shape and smooth surface were synthesized, which were characterized as an efficient adsorbent for wastewater treatment from three types of antibiotics: ciprofloxacin (CIP), tetracycline (TC), and benzylpenicillin (BP). As follows from DFT calculations, the interaction of antibiotic molecules (AM) with the BN surface is neither purely physical nor purely chemical, and negative binding energy (BE) indicates that the adsorption process is spontaneous and endothermic. The calculated electron density redistributions at the AM/BN interfaces show that antibiotics interact with BN mainly through oxygen-containing groups. In addition, this interaction causes the BN surface to bend, which increases both the BE and the contact area. The removal efficiency of antibiotics (Re, %) depends on their initial concentration. At an initial concentration of 10 µg/mL, Re50 and Re100 were observed after 24 h and 14 days, respectively. With an increase in the initial concentration to 40 µg/mL, Re50 and Re100 were achieved after 5 and 28 days (with the exception of ciprofloxacin (~80% Re)). The maximum sorption capacity of BNNPs (qe) was determined to be 297.3 mg/g (TC), 254.8 mg/g (BP), and 238.2 mg/g (CIP), which is significantly superior to many other systems. Tetracycline is adsorbed much faster than the other two antibiotics, which is confirmed by both theoretical and experimental data. Based on the results of the DFT analysis, a simple and efficient sorbent regeneration strategy was proposed, which ensures complete removal of antibiotics after 14 (BP), 21 (TC), and 10 (CIP) days. Thus, the obtained results clearly show that BNNPs are promising sorbents for various classes of antibiotics, including aminoglycosides, tetracyclines, and ß-lactams.
RESUMO
The use of nanoparticles (NPs) to modify the surface of cotton fabric is a promising approach to endowing the material with a set of desirable characteristics that can significantly expand the functionality, wear comfort, and service life of textile products. Herein, two approaches to modifying the surface of hexagonal boron nitride (h-BN) NPs with a hollow core and a smooth surface by treatment with maleic anhydride (MA) and diethylene triamine (DETA) were studied. The DETA and MA absorption on the surface of h-BN and the interaction of surface-modified h-NPs with cellulose as the main component of cotton were modeled using density functional theory with the extended Perdew-Burke-Ernzerhof functional. Theoretical modeling showed that the use of DETA as a binder agent can increase the adhesion strength of BN NPs to textile fabric due to the simultaneous hydrogen bonds with cellulose and BN. Due to the difference in zeta potentials (-38.4 vs -25.8 eV), MA-modified h-BN NPs form a stable suspension, while DETA-modified BN NPs tend to agglomerate. Cotton fabric coated with surface-modified NPs exhibits an excellent wash resistance and high hydrophobicity with a water contact angle of 135° (BN-MA) and 146° (BN-DETA). Compared to the original textile material, treatment with MA- and DETA-modified h-BN NPs increases heat resistance by 10% (BN-MA fabric) and 15% (BN-DETA fabric). Cotton fabrics coated with DETA- and MA-modified BN NPs show enhanced antibacterial activity against Escherichia coli U20 and Staphylococcus aureus strains and completely prevent the formation of an E. coli biofilm. The obtained results are important for the further development of fabrics for sports and medical clothing as well as wound dressings.
Assuntos
Escherichia coli , Nanopartículas , Fibra de Algodão , Temperatura Alta , DEET , Têxteis , Antibacterianos/farmacologia , Nanopartículas/química , Interações Hidrofóbicas e Hidrofílicas , CeluloseRESUMO
We propose a novel approach to disperse and extract small-diameter single-walled carbon nanotubes (SWCNTs) using an aqueous solution of riboflavin and Sephacryl gel. The extraction of small-diameter semiconducting SWCNTs was observed, regardless of the initial diameter distribution of the SWCNTs. Dispersion of SWCNTs occurs due to the adsorption of π-conjugated isoalloxazine moieties on the surface of small-diameter nanotubes and interactions between hydroxy groups of ribityl chains with water. During the SWCNT extraction, specific adsorption of riboflavin to SWCNTs leads to the minimization of interactions between the SWCNTs and gel media. Our experimental findings are supported by ab initio calculations demonstrating the impact of the riboflavin wrapping pattern around the SWCNTs on their interaction with the allyl dextran gel.
RESUMO
Utilization of antibacterial components-conjugated nanoparticles (NPs) is emerging as an attractive strategy for combating various pathogens. Herein, we demonstrate that Ag/BN NPs and antibiotic-loaded BN and Ag/BN nanoconjugates are promising carriers to fight bacterial and fungal infections. Extensive biological tests included two types of Gram-positive methicillin-resistant Staphylococcus aureus strains (B8469 and MW2), two types of Gram-negative Pseudomonas aeruginosa strains (ATCC27853 and B1307/17), and 47 types of Escherichia coli strains (including 41 multidrug-resistant ones), as well as five types of fungal cultures: Candida albicans (candidiasis-thrush) ATCC90028 and ATCC24433, Candida parapsilosis ATCC90018, Candida auris CBS109113, and Neurospora crassa wt. We have demonstrated that, even within a single genus Escherichia, there are many hospital E. coli strains with multi-drug resistance to different antibiotics. Gentamicin-loaded BN NPs have high bactericidal activity against S. aureus, P. aeruginosa, and 38 types of the E. coli strains. For the rest of the tested E. coli strains, the Ag nanoparticle-containing nanohybrids have shown superior bactericidal efficiency. The Ag/BN nanohybrids and amphotericin B-loaded BN and Ag/BN NPs also reveal high fungicidal activity against C. albicans, C. auris, C. parapsilosis, and N. crassa cells. In addition, based on the density functional theory calculations, the nature of antibiotic-nanoparticle interaction, the sorption capacity of the BN and Ag/BN nanohybrids for gentamicin and amphotericin B, and the most energetically favorable positions of the drug molecules relative to the carrier surface, which lead to lowest binding energies, have been determined. The obtained results clearly show high therapeutic potential of the antibiotic-loaded Ag/BN nanocarriers providing a broad bactericidal and fungicidal protection against all of the studied pathogens.
Assuntos
Antibacterianos , Compostos de Boro/química , Portadores de Fármacos/química , Nanopartículas/química , Prata/química , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Bactérias/efeitos dos fármacos , Candida/efeitos dos fármacos , Gentamicinas/química , Gentamicinas/farmacologiaRESUMO
A new low-pressure plasma-based approach to activate the surface of BN nanoparticles (BNNPs) in order to facilitate the attachment of folate acid (FA) molecules for cancer-specific therapy is described. Plasma treatment of BNNPs (BNNPsPT) was performed in a radiofrequency plasma reactor using ethylene and carbon dioxide monomers. The carboxyl groups deposited on the surface of BNNPsPT were activated by N,N'-dicyclohexylcarbodiimide (DCC) and participated in the condensation reaction with ethylene diamine (EDA) to form a thin amino-containing layer (EDA-BNNPPT). Then, the DCC-activated FA was covalently bonded with BNNPsPT by a chemical reaction between amino groups of EDA-BNNPsPT and carboxyl groups of FA. Density functional theory calculations showed that the pre-activation of FA by DCC is required for grafting of the FA to the EDA-BNNPsPT. It was also demonstrated that after FA immobilization, the electronic characteristics of the pteridine ring remain unchanged, indicating that the targeting properties of the FA/EDA-BNNPsPT nanohybrids are preserved.
RESUMO
Electrocatalytic hydrogen evolution reaction (HER) in alkaline solution is hindered by its sluggish kinetics toward water dissociation. Nickel-based catalysts, as low-cost and effective candidates, show great potentials to replace platinum (Pt)-based materials in the alkaline media. The main challenge regarding this type of catalysts is their relatively poor durability. In this work, we conceive and construct a charge-polarized carbon layer derived from carbon quantum dots (CQDs) on Ni3N nanostructure (Ni3N@CQDs) surfaces, which simultaneously exhibit durable and enhanced catalytic activity. The Ni3N@CQDs shows an overpotential of 69 mV at a current density of 10 mA cm-2 in a 1 M KOH aqueous solution, lower than that of Pt electrode (116 mV) at the same conditions. Density functional theory (DFT) simulations reveal that Ni3N and interfacial oxygen polarize charge distributions between originally equal C-C bonds in CQDs. The partially negatively charged C sites become effective catalytic centers for the key water dissociation step via the formation of new C-H bond (Volmer step) and thus boost the HER activity. Furthermore, the coated carbon is also found to protect interior Ni3N from oxidization/hydroxylation and therefore guarantees its durability. This work provides a practical design of robust and durable HER electrocatalysts based on nonprecious metals.