Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 21(5): 555-566, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32327756

RESUMO

Regulatory myeloid immune cells, such as myeloid-derived suppressor cells (MDSCs), populate inflamed or cancerous tissue and block immune cell effector functions. The lack of mechanistic insight into MDSC suppressive activity and a marker for their identification has hampered attempts to overcome T cell inhibition and unleash anti-cancer immunity. Here, we report that human MDSCs were characterized by strongly reduced metabolism and conferred this compromised metabolic state to CD8+ T cells, thereby paralyzing their effector functions. We identified accumulation of the dicarbonyl radical methylglyoxal, generated by semicarbazide-sensitive amine oxidase, to cause the metabolic phenotype of MDSCs and MDSC-mediated paralysis of CD8+ T cells. In a murine cancer model, neutralization of dicarbonyl activity overcame MDSC-mediated T cell suppression and, together with checkpoint inhibition, improved the efficacy of cancer immune therapy. Our results identify the dicarbonyl methylglyoxal as a marker metabolite for MDSCs that mediates T cell paralysis and can serve as a target to improve cancer immune therapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunoterapia/métodos , Melanoma/imunologia , Células Supressoras Mieloides/imunologia , Aldeído Pirúvico/metabolismo , Amina Oxidase (contendo Cobre)/metabolismo , Animais , Linfócitos T CD8-Positivos/transplante , Comunicação Celular , Proliferação de Células , Humanos , Tolerância Imunológica , Ativação Linfocitária , Melanoma Experimental , Camundongos , Camundongos Transgênicos , Neoplasias Experimentais , Receptor de Morte Celular Programada 1/metabolismo
2.
Immunity ; 56(6): 1341-1358.e11, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37315536

RESUMO

Type 1 conventional dendritic cells (cDC1s) are critical for anti-cancer immunity. Protective anti-cancer immunity is thought to require cDC1s to sustain T cell responses within tumors, but it is poorly understood how this function is regulated and whether its subversion contributes to immune evasion. Here, we show that tumor-derived prostaglandin E2 (PGE2) programmed a dysfunctional state in intratumoral cDC1s, disabling their ability to locally orchestrate anti-cancer CD8+ T cell responses. Mechanistically, cAMP signaling downstream of the PGE2-receptors EP2 and EP4 was responsible for the programming of cDC1 dysfunction, which depended on the loss of the transcription factor IRF8. Blockade of the PGE2-EP2/EP4-cDC1 axis prevented cDC1 dysfunction in tumors, locally reinvigorated anti-cancer CD8+ T cell responses, and achieved cancer immune control. In human cDC1s, PGE2-induced dysfunction is conserved and associated with poor cancer patient prognosis. Our findings reveal a cDC1-dependent intratumoral checkpoint for anti-cancer immunity that is targeted by PGE2 for immune evasion.


Assuntos
Dinoprostona , Neoplasias , Humanos , Anticorpos , Linfócitos T CD8-Positivos , Células Dendríticas , Receptores de Prostaglandina E
3.
Nature ; 592(7854): 444-449, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33762736

RESUMO

Nonalcoholic steatohepatitis (NASH) is a manifestation of systemic metabolic disease related to obesity, and causes liver disease and cancer1,2. The accumulation of metabolites leads to cell stress and inflammation in the liver3, but mechanistic understandings of liver damage in NASH are incomplete. Here, using a preclinical mouse model that displays key features of human NASH (hereafter, NASH mice), we found an indispensable role for T cells in liver immunopathology. We detected the hepatic accumulation of CD8 T cells with phenotypes that combined tissue residency (CXCR6) with effector (granzyme) and exhaustion (PD1) characteristics. Liver CXCR6+ CD8 T cells were characterized by low activity of the FOXO1 transcription factor, and were abundant in NASH mice and in patients with NASH. Mechanistically, IL-15 induced FOXO1 downregulation and CXCR6 upregulation, which together rendered liver-resident CXCR6+ CD8 T cells susceptible to metabolic stimuli (including acetate and extracellular ATP) and collectively triggered auto-aggression. CXCR6+ CD8 T cells from the livers of NASH mice or of patients with NASH had similar transcriptional signatures, and showed auto-aggressive killing of cells in an MHC-class-I-independent fashion after signalling through P2X7 purinergic receptors. This killing by auto-aggressive CD8 T cells fundamentally differed from that by antigen-specific cells, which mechanistically distinguishes auto-aggressive and protective T cell immunity.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Fígado/imunologia , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/imunologia , Hepatopatia Gordurosa não Alcoólica/patologia , Receptores CXCR6/imunologia , Acetatos/farmacologia , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/patologia , Morte Celular/efeitos dos fármacos , Morte Celular/imunologia , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Humanos , Interleucina-15/imunologia , Interleucina-15/farmacologia , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
Artigo em Alemão | MEDLINE | ID: mdl-36269337

RESUMO

BACKGROUND AND AIM: At the beginning of the COVID-19 vaccination campaign in Germany, employees in medical facilities were prioritised for vaccination against SARS-CoV­2 due to the high risk of exposure and contact with vulnerable groups. Hospitals were therefore encouraged to organise and implement the vaccination of their employees as soon as possible. The aim of the study was to record the practice regarding the vaccination strategy for employees in German hospitals. METHODS: In a self-developed cross-sectional study, infection control practitioners of all German university hospitals as well as non-university hospitals in Lower Saxony and Bavaria were surveyed in March 2021. The data were stratified according to the characteristics of university hospitals and non-university hospitals. RESULTS: Of 416 invitations sent out, 100 questionnaires (university hospitals: 33; non-university hospitals: 67) were completed. University hospitals reported greater vaccination capacity than non-university hospitals, but a limiting factor was uncertain vaccine supply. Vaccination information campaigns were planned or had already been conducted in 89% of clinics. About two-thirds of the respondents (70%) said they did not plan to conduct antibody tests on vaccinated employees. A follow-up of vaccinated employees to detect possible SARS-CoV­2 infections by PCR was planned by 41% of the respondents. In case of detection of SARS-CoV­2 infection, 72% of the respondents had planned further diagnostic procedures. DISCUSSION: All hospitals were able to achieve rapid implementation of COVID-19 vaccination of their employees. At the time of the survey, there was also much uncertainty regarding the management of breakthrough infections as well as the need for booster vaccinations.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Alemanha/epidemiologia , Vacinas contra COVID-19/uso terapêutico , Profissionais Controladores de Infecções , Estudos Transversais , Vacinação , Hospitais Universitários , Inquéritos e Questionários
6.
Carcinogenesis ; 40(4): 551-559, 2019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-30380024

RESUMO

Ring finger protein 43 (RNF43) is an E3 ubiquitin ligase that has been described to be frequently mutated in gastrointestinal cancers. RNF43 downregulation was associated with distant metastasis, TNM stage and poorer survival in patients with gastric and colorectal cancers. Functional analysis has shown that overexpressed RNF43 negatively regulates Wnt signalling by ubiquitinating Frizzled receptors and targeting them for degradation and by sequestering T-cell factor 4 (TCF4) to the nuclear membrane, thereby inhibiting Wnt-mediated transcription. In the stomach, RNF43 overexpression was shown to impair stem-like properties and to be negatively correlated with expression of Wnt-target genes. In this study, we show that RNF43 knockdown enhances the tumourigenic potential of gastric and colorectal cancer cell lines in vitro and in vivo. Thus, loss of RNF43 leads to increased proliferation and anchorage-independent growth as well as increased invasive capacity. In a xenograft model, RNF43 depletion enhanced tumour growth. Furthermore, we established two mouse models in which mutations in the RING domain of RNF43 were introduced. In the intestine and colon, loss of Rnf43 did not induce changes in epithelial architecture or proliferation. In contrast, in the stomach, thickening of the mucosa, hyperplasia and cellular atypia were observed in these mice. Notably, this was independent of elevated Wnt signalling. Together, our results show that RNF43 plays a tumour suppressive role in gastric and colorectal cancer cells and that the loss of its function alters gastric tissue homeostasis in vivo.


Assuntos
Proliferação de Células/genética , Neoplasias Colorretais/genética , Intestinos/patologia , Neoplasias Gástricas/genética , Estômago/patologia , Ubiquitina-Proteína Ligases/genética , Animais , Células CACO-2 , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Células HT29 , Humanos , Camundongos , Mucosa/patologia , Mutação/genética , Neoplasias Gástricas/patologia , Ubiquitinação/genética , Via de Sinalização Wnt/genética
7.
Mol Ther ; 25(7): 1616-1627, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28434868

RESUMO

Hypoxia promotes vascularization by stabilization and activation of the hypoxia inducible factor 1α (HIF-1α), which constitutes a target for angiogenic gene therapy. However, gene therapy is hampered by low gene delivery efficiency and non-specific side effects. Here, we developed a gene transfer technique based on magnetic targeting of magnetic nanoparticle-lentivirus (MNP-LV) complexes allowing site-directed gene delivery to individual wounds in the dorsal skin of mice. Using this technique, we were able to control HIF-1α dependent wound healing angiogenesis in vivo via site-specific modulation of the tyrosine phosphatase activity of SHP-2. We thus uncover a novel physiological role of SHP-2 in protecting HIF-1α from proteasomal degradation via a Src kinase dependent mechanism, resulting in HIF-1α DNA-binding and transcriptional activity in vitro and in vivo. Excitingly, using targeting of MNP-LV complexes, we achieved simultaneous expression of constitutively active as well as inactive SHP-2 mutant proteins in separate wounds in vivo and hereby specifically and locally controlled HIF-1α activity as well as the angiogenic wound healing response in vivo. Therefore, magnetically targeted lentiviral induced modulation of SHP-2 activity may be an attractive approach for controlling patho-physiological conditions relying on hypoxic vessel growth at specific sites.


Assuntos
Portadores de Fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Nanopartículas de Magnetita/administração & dosagem , Neovascularização Fisiológica , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Cicatrização/genética , Animais , Linhagem Celular , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lentivirus/genética , Lentivirus/metabolismo , Nanopartículas de Magnetita/química , Camundongos , Terapia de Alvo Molecular , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteólise , Pele/lesões , Pele/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Quinases da Família src/genética , Quinases da Família src/metabolismo
8.
Eur Radiol ; 27(3): 1105-1113, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27329519

RESUMO

OBJECTIVES: To assess labelling efficiency of rabbit mesenchymal stem cells (MSCs) using the near-infrared dye 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide (DiR) and detection of labelled MSCs for osteochondral defect repair in a rabbit model using fluorescence molecular tomography-X-ray computed tomography (FMT-XCT). METHODS: MSCs were isolated from New Zealand White rabbits and labelled with DiR (1.25-20 µg/mL). Viability and induction of apoptosis were assessed by XTT- and Caspase-3/-7-testing. Chondrogenic potential was evaluated by measurement of glycosaminoglycans. Labelled cells and unlabeled controls (n = 3) underwent FMT-XCT imaging before and after chondrogenic differentiation. Osteochondral defects were created surgically in rabbit knees (n = 6). Unlabeled and labelled MSCs were implanted in fibrin-clots and imaged by FMT-XCT. Statistical analyses were performed using multiple regression models. RESULTS: DiR-labelling of MSCs resulted in a dose-dependent fluorescence signal on planar images in trans-illumination mode. No significant reduction in viability or induction of apoptosis was detected at concentrations below 10 µg DiR/mL (p > .05); the chondrogenic potential of MSCs was not affected (p > .05). FMT-XCT of labelled MSCs in osteochondral defects showed a significant signal of the transplant (p < .05) with additional high-resolution anatomical information about its osteochondral integration. CONCLUSIONS: FMT-XCT allows for detection of stem cell implantation within osteochondral regeneration processes. KEY POINTS: • DiR-labelling of MSCs shows no toxic side effects or impairment of chondrogenesis. • Fluorescence molecular tomography allows for detection of MSCs for osteochondral defect repair. • FMT-XCT helps to improve evaluation of cell implantation and osteochondral regeneration processes.


Assuntos
Condrogênese , Articulação do Joelho/diagnóstico por imagem , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Carbocianinas , Diferenciação Celular , Sobrevivência Celular , Fluorescência , Corantes Fluorescentes , Imagem Molecular , Imagem Óptica , Coelhos , Tomografia Computadorizada por Raios X , Cicatrização
9.
EMBO J ; 30(20): 4309-22, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21857646

RESUMO

Cancer stem cells or cancer initiating cells are believed to contribute to cancer recurrence after therapy. MicroRNAs (miRNAs) are short RNA molecules with fundamental roles in gene regulation. The role of miRNAs in cancer stem cells is only poorly understood. Here, we report miRNA expression profiles of glioblastoma stem cell-containing CD133(+) cell populations. We find that miR-9, miR-9(*) (referred to as miR-9/9(*)), miR-17 and miR-106b are highly abundant in CD133(+) cells. Furthermore, inhibition of miR-9/9(*) or miR-17 leads to reduced neurosphere formation and stimulates cell differentiation. Calmodulin-binding transcription activator 1 (CAMTA1) is a putative transcription factor, which induces the expression of the anti-proliferative cardiac hormone natriuretic peptide A (NPPA). We identify CAMTA1 as an miR-9/9(*) and miR-17 target. CAMTA1 expression leads to reduced neurosphere formation and tumour growth in nude mice, suggesting that CAMTA1 can function as tumour suppressor. Consistently, CAMTA1 and NPPA expression correlate with patient survival. Our findings could provide a basis for novel strategies of glioblastoma therapy.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Glioblastoma/metabolismo , MicroRNAs/metabolismo , Transativadores/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Antígeno AC133 , Animais , Antígenos CD/metabolismo , Fator Natriurético Atrial/biossíntese , Diferenciação Celular , Linhagem Celular Tumoral , Estudos de Coortes , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/mortalidade , Glicoproteínas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Peptídeos/metabolismo , Transcriptoma
10.
Carcinogenesis ; 35(4): 942-50, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24325912

RESUMO

Gastric cancer (GC) is still one of the most common causes of cancer-related death worldwide, which is mainly attributable to late diagnosis and poor treatment options. Infection with Helicobacter pylori, different environmental factors and genetic alterations are known to influence the risk of developing gastric tumors. However, the molecular mechanisms involved in gastric carcinogenesis are still not fully understood, making it difficult to design targeted therapeutic approaches. Aberrant expression of the specific gastric differentiation marker SOX2 has been observed in stomach cancer. However, the role of SOX2 in gastric tumors has not been well established to date. To elucidate the role of SOX2 in gastric tumorigenesis, SOX2 transcriptional activity was blocked in AZ-521 cells. Interestingly, inhibition of SOX2 reduced cell proliferation and migration, increased apoptosis and induced changes in cell cycle. Blocking of SOX2 also reduced the tumorigenic potential of AZ-521 cells in vivo. In addition, correlation of SOX2 expression and proliferation was observed in a subset of human gastric tumors. Finally, target genes of SOX2 were for the first time identified by RNA microarray in GC cells. Taken together, the results presented here indicate that SOX2 controls several aspects related to GC development and progression by regulating the expression of members of important signaling pathways. These findings could provide new therapeutic options for a subset of GCs exhibiting SOX2 deregulation.


Assuntos
Fatores de Transcrição SOXB1/fisiologia , Neoplasias Gástricas/patologia , Animais , Sequência de Bases , Carcinogênese , Linhagem Celular Tumoral , Primers do DNA , Feminino , Humanos , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição SOXB1/genética
11.
Mol Ther ; 21(2): 300-8, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23299796

RESUMO

Tumor necrosis factor alpha (TNFα) is a potent antitumoral cytokine, either killing tumor cells directly or affecting the tumor vasculature leading to enhanced accumulation of macromolecular drugs. Due to dose limiting side effects systemic administration of TNFα protein at therapeutically active doses is precluded. With gene vectors, tumor restricted TNFα expression can be achieved and in principle synergize with chemotherapy. Synthetic gene carriers based on polyamines were intravenously injected, which either passively accumulate within the tumor or specifically target the epidermal growth factor receptor. A single intravenous injection of TNFα gene vector promoted accumulation of liposomal doxorubicine (Doxil) in murine neuroblastoma and human hepatoma by enhancing tumor endothelium permeability. The expression of transgenic TNFα was restricted to tumor tissue. Three treatment cycles with TNFα gene vectors and Doxil significantly delayed tumor growth in subcutaneous murine Neuro2A neuroblastoma. Also tumors re-growing after initial treatment were successfully treated in a fourth cycle pointing at the absence of resistance mechanisms. Systemic Neuro2A metastases or human LS174T colon carcinoma metastases in liver were also successfully treated with this combined approach. In conclusion, this schedule opens the possibility for the efficient treatment of tumors metastases otherwise not accessible for macromolecular drug carriers.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Doxorrubicina/farmacologia , Terapia Genética/métodos , Metástase Neoplásica/terapia , Fator de Necrose Tumoral alfa/farmacologia , Animais , Bioensaio , Linhagem Celular Tumoral , Sinergismo Farmacológico , Feminino , Regulação da Expressão Gênica , Vetores Genéticos , Humanos , Lentivirus/genética , Camundongos , Plasmídeos/genética , Transfecção/métodos , Transgenes
12.
Blood ; 117(16): e171-81, 2011 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-21357765

RESUMO

Research applications and cell therapies involving genetically modified cells require reliable, standardized, and cost-effective methods for cell manipulation. We report a novel nanomagnetic method for integrated cell separation and gene delivery. Gene vectors associated with magnetic nanoparticles are used to transfect/transduce target cells while being passaged and separated through a high gradient magnetic field cell separation column. The integrated method yields excellent target cell purity and recovery. Nonviral and lentiviral magselectofection is efficient and highly specific for the target cell population as demonstrated with a K562/Jurkat T-cell mixture. Both mouse and human enriched hematopoietic stem cell pools were effectively transduced by lentiviral magselectofection, which did not affect the hematopoietic progenitor cell number determined by in vitro colony assays. Highly effective reconstitution of T and B lymphocytes was achieved by magselectofected murine wild-type lineage-negative Sca-1(+) cells transplanted into Il2rg(-/-) mice, stably expressing GFP in erythroid, myeloid, T-, and B-cell lineages. Furthermore, nonviral, lentiviral, and adenoviral magselectofection yielded high transfection/transduction efficiency in human umbilical cord mesenchymal stem cells and was fully compatible with their differentiation potential. Upscaling to a clinically approved automated cell separation device was feasible. Hence, once optimized, validated, and approved, the method may greatly facilitate the generation of genetically engineered cells for cell therapies.


Assuntos
Separação Celular/métodos , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Células-Tronco Hematopoéticas/citologia , Células-Tronco Mesenquimais/citologia , Animais , Antígenos Ly/genética , Vetores Genéticos/química , Células-Tronco Hematopoéticas/metabolismo , Humanos , Subunidade gama Comum de Receptores de Interleucina/genética , Células Jurkat , Células K562 , Magnetismo , Proteínas de Membrana/genética , Células-Tronco Mesenquimais/metabolismo , Camundongos , Nanopartículas/química , Transfecção
13.
J Control Release ; 363: 101-113, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37722420

RESUMO

Although cationic liposomes are efficient carriers for nucleic acid delivery, their toxicity often hampers the clinical translation. Polyethylene glycol (PEG) coating has been largely used to improve their stability and reduce toxicity. Nevertheless, it has been found to decrease the transfection process. In order to exploit the advantages of cationic liposomes and PEG decoration for nucleic acid delivery, liposomes decorated with tetraArg-[G-1]-distearoyl glycerol (Arg4-DAG) dendronic oligo-cationic lipid enhancer (OCE) and PEG-lipid have been investigated. Non decorated or OCE-decorated lipoplexes (OCEfree-LPX and OCE-LPX, respectively) were obtained by lipid film hydration using oligonucleotide (ON) solutions. PEG and OCE/PEG decorated lipoplexes (PEG-OCEfree-LPX and PEG-OCE-LPX, respectively) were obtained by post-insertion of 2 or 5 kDa PEG-DSPE on preformed lipoplexes. The OCE decoration yielded lipoplexes with size of about 240 nm, 84% loading efficiency at 10 N/P ratio, ten times higher than OCEfree-LPX, and prevented the ON release when incubated with physiological heparin concentration or with plasma. The PEG decoration reduced the zeta potential, enhanced the lipoplex stability in serum and decreased both hemolysis and cytotoxicity, while it did not affect the lipoplex size and ON loading. With respect to OCEfree-LPX, the OCE-LPX remarkably associated with cells and were taken up by different cancer cell lines (HeLa and MDA-MB-231). Interestingly, 2 or 5 kDa PEG decoration did not reduce either the cell interaction or the cell up-take of the cationic lipoplexes. With siRNA as a payload, OCE enabled efficient internalization, but endosomal release was hampered. Post-transfection treatment with the lysosomotropic drug chloroquine allowed to identify the optimal time point for endosomal escape. Chloroquine treatment after 12 to 20 h of LPX pre-incubation enabled siRNA mediated target knockdown indicating that this is the time window of endo-lysosomal processing. This indicates that OCE can protect siRNA from lysosomal degradation for up to 20 h, as shown by these rescue experiments.


Assuntos
Lipossomos , Polietilenoglicóis , Humanos , RNA Interferente Pequeno/genética , Transfecção , Células HeLa , Lipídeos , Cloroquina
14.
Cancer Cell ; 41(8): 1498-1515.e10, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37451271

RESUMO

Type 1 conventional dendritic cells (cDC1) can support T cell responses within tumors but whether this determines protective versus ineffective anti-cancer immunity is poorly understood. Here, we use imaging-based deep learning to identify intratumoral cDC1-CD8+ T cell clustering as a unique feature of protective anti-cancer immunity. These clusters form selectively in stromal tumor regions and constitute niches in which cDC1 activate TCF1+ stem-like CD8+ T cells. We identify a distinct population of immunostimulatory CCR7neg cDC1 that produce CXCL9 to promote cluster formation and cross-present tumor antigens within these niches, which is required for intratumoral CD8+ T cell differentiation and expansion and promotes cancer immune control. Similarly, in human cancers, CCR7neg cDC1 interact with CD8+ T cells in clusters and are associated with patient survival. Our findings reveal an intratumoral phase of the anti-cancer T cell response orchestrated by tumor-residing cDC1 that determines protective versus ineffective immunity and could be exploited for cancer therapy.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Humanos , Receptores CCR7/metabolismo , Neoplasias/terapia , Antígenos de Neoplasias , Células Dendríticas
15.
Pharm Res ; 29(5): 1219-31, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22207207

RESUMO

PURPOSE: To target adenoviral vectors to cells of the vasculature and shielding vectors from inactivation by the immune system. METHODS: Complexes of reporter gene expressing adenoviral vectors with positively charged magnetic nanoparticles were formed by electrostatic interaction in presence or absence of additional negatively charged poly(ethylene glycol)-based polymer. Transduction of HUVEC was analyzed in vitro under flow. Protection from inactivation by the immune system was analyzed by pre-incubation of AdV and complexes with neutralizing antibodies and subsequent reporter protein analysis of infected cells. RESULTS: Physical association of AdV with MNP and polymers was demonstrated by radioactive labelling of components and co-sedimentation in a magnetic field. Ad-MNP+/-polymer resulted in efficient transduction of HUVEC, depending on MOI and flow rate in presence of magnetic field, whereas no transduction was observed without complex formation with MNP or in absence of magnetic field. Association with MNP did result in protection from neutralizing antibodies, with slightly increased protection provided by the polymer. CONCLUSIONS: Complex formation of AdV with MNP is a viable means for targeting of vectors to areas of magnetic field gradient. Additional coating with polymer might proof useful in protection from inactivation by the immune system.


Assuntos
Adenoviridae/genética , Células Endoteliais/fisiologia , Magnetismo , Nanopartículas , Transdução Genética/métodos , Adenoviridae/química , Células Endoteliais/química , Células Endoteliais/virologia , Eritrócitos/química , Eritrócitos/metabolismo , Vetores Genéticos/química , Vetores Genéticos/genética , Humanos , Nanopartículas/química , Polietilenoglicóis/química , Eletricidade Estática
16.
Pharm Res ; 29(5): 1255-69, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22274554

RESUMO

PURPOSE: Targeting of specific cells and tissues is of great interest for clinical relevant gene- and cell-based therapies. We use magnetic nanoparticles (MNPs) with a ferrimagnetic core (Fe(3)O(4)) with different coatings to optimize MNP-assisted lentiviral gene transfer with focus on different endothelial cell lines. METHODS: Lentiviral vector (LV)/MNP binding was characterized for various MNPs by different methods (e.g. magnetic responsiveness measurement). Transduced cells were analyzed by flow cytometry, fluorescence microscopy and iron recovery. Cell transduction and cell positioning under physiological flow conditions were performed using different in vitro and ex vivo systems. RESULTS: Analysis of diverse MNPs with different coatings resulted in identification of nanoparticles with improved LV association and enhanced transduction properties of complexes in several endothelial cell lines. The magnetic moments of LV/MNP complexes are high enough to achieve local gene targeting of perfused endothelial cells. Perfusion of a mouse aorta with LV/MNP transduced cells under clinically relevant flow conditions led to local cell attachment at the intima of the vessel. CONCLUSION: MNP-guided lentiviral transduction of endothelial cells can be significantly enhanced and localized by using optimized MNPs.


Assuntos
Células Endoteliais/metabolismo , Técnicas de Transferência de Genes , Lentivirus/genética , Magnetismo , Nanopartículas , Animais , Bovinos , Linhagem Celular , Sobrevivência Celular , Relação Dose-Resposta a Droga , Vetores Genéticos/genética , Humanos , Camundongos , Transgenes
17.
Pharm Res ; 29(5): 1344-65, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22222384

RESUMO

PURPOSE: To optimize silica-iron oxide magnetic nanoparticles with surface phosphonate groups decorated with 25-kD branched polyethylenimine (PEI) for gene delivery. METHODS: Surface composition, charge, colloidal stabilities, associations with adenovirus, magneto-tranduction efficiencies, cell internalizations, in vitro toxicities and MRI relaxivities were tested for the particles decorated with varying amounts of PEI. RESULTS: Moderate PEI-decoration of MNPs results in charge reversal and destabilization. Analysis of space and time resolved concentration changes during centrifugation clearly revealed that at >5% PEI loading flocculation gradually decreases and sufficient stabilization is achieved at >10%. The association with adenovirus occurred efficiently at levels over 5% PEI, resulting in the complexes stable in 50% FCS at a PEI-to-iron w/w ratio of ≥7%; the maximum magneto-transduction efficiency was achieved at 9-12% PEI. Primary silica iron oxide nanoparticles and those with 11.5% PEI demonstrated excellent r(2)* relaxivity values (>600 s(-1)(mM Fe)(-1)) for the free and cell-internalized particles. CONCLUSIONS: Surface decoration of the silica-iron oxide nanoparticles with a PEI-to-iron w/w ratio of 10-12% yields stable aqueous suspensions, allows for efficient viral gene delivery and labeled cell detection by MRI.


Assuntos
Compostos Férricos/química , Técnicas de Transferência de Genes , Vetores Genéticos/química , Magnetismo , Nanopartículas/química , Dióxido de Silício/química , Adenoviridae/genética , Animais , Linhagem Celular , Coloides/química , Estabilidade de Medicamentos , Vetores Genéticos/genética , Humanos , Lentivirus/genética , Imageamento por Ressonância Magnética , Camundongos , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Polietilenoimina/química , Ratos , Propriedades de Superfície , Difração de Raios X
18.
J Virol Methods ; 299: 114316, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34627947

RESUMO

Murine leukemia virus (MLV) and murine stem cell virus (MSCV) and derived retroviral vectors are widely used to study retrovirus biology and as tools for gene delivery. The method described here represents a quantitative real time PCR (qPCR) with hydrolysis probe that can be applied within classical qPCR as well as in digital droplet PCR (ddPCR). The method targets a 60 bp long fragment located within the U5 region of the MLV/MSCV genome sequence. For the here described method a LOD95% of 25 copies per PCR reaction (DNA) and 80 copies per PCR reaction (RNA) was determined, and PCR efficiencies of 92.5 % and 98.5 %, respectively, were observed. This method enables the fast and simple titration of viral genomic RNA present in retroviral vector stocks for accurate and consistent transduction experiments. Furthermore, it enables the detection of proviral and transfer plasmid derived DNA sequences and can be modified to differentiate between retroviral RNA and DNA.


Assuntos
Ácidos Nucleicos , Animais , Vetores Genéticos , Vírus da Leucemia Murina/genética , Camundongos , Retroviridae/genética , Células-Tronco
19.
Injury ; 53 Suppl 2: S2-S12, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35305805

RESUMO

Critical-size long bone defects represent one of the major causes of fracture non-union and remain a significant challenge in orthopaedic surgery. Two-stage procedures such as a Masquelet technique demonstrate high level of success however their main disadvantage is the need for a second surgery, which is required to remove the non-resorbable cement spacer and to place the bone graft into the biological chamber formed by the 'induced membrane'. Recent research efforts have therefore been dedicated towards the design, fabrication and testing of resorbable implants that could mimic the biological functions of the cement spacer and the induced membrane. Amongst the various manufacturing techniques used to fabricate these implants, three-dimensional (3D) printing and electrospinning methods have gained a significant momentum due their high-level controllability, scalable processing and relatively low cost. This review aims to present recent advances in the evaluation of electrospun and 3D printed polymeric materials for critical-size, long bone defect reconstruction, emphasizing both their beneficial properties and current limitations. Furthermore, we present and discuss current state-of-the art techniques required for characterisation of the materials' physical, mechanical and biological characteristics. These represent the essential first steps towards the development of personalised implants for single-surgery, large defect reconstruction in weight-bearing bones.


Assuntos
Regeneração Óssea , Osso e Ossos , Transplante Ósseo , Humanos , Polímeros , Impressão Tridimensional
20.
Oncogene ; 41(9): 1376-1382, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35091677

RESUMO

A variety of cancer entities are driven by KRAS mutations, which remain difficult to target clinically. Survival pathways, such as resistance to cell death, may represent a promising treatment approach in KRAS mutated cancers. Based on the frequently observed genomic deletions of BCL-2-related ovarian killer (BOK) in cancer patients, we explored the function of BOK in a mutant KrasG12D-driven murine model of lung cancer. Using KrasG12D/+ Bok-/- mice, we observed an overall tumor-promoting function of BOK in vivo. Specifically, loss of BOK reduced proliferation both in cell lines in vitro as well as in KrasG12D-driven tumor lesions in vivo. During tumor development in vivo, loss of BOK resulted in a lower tumor burden, with fewer, smaller, and less advanced tumors. Using KrasG12D/+ Tp53Δ/Δ Bok-/- mice, we identified that this phenotype was entirely dependent on the presence of functional p53. Furthermore, analysis of a human dataset of untreated early-stage lung tumors did not identify any common deletion of the BOK locus, independently of the TP53 status or the histopathological classification. Taken together our data indicate that BOK supports tumor progression in Kras-driven lung cancer.


Assuntos
Proteína Supressora de Tumor p53
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA