Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Lab Invest ; 104(4): 100330, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38242234

RESUMO

Intestinal microbiota confers susceptibility to diet-induced obesity, yet many probiotic species that synthesize tryptophan (trp) actually attenuate this effect, although the underlying mechanisms are unclear. We monocolonized germ-free mice with a widely consumed probiotic Lacticaseibacillus rhamnosus GG (LGG) under trp-free or -sufficient dietary conditions. We obtained untargeted metabolomics from the mouse feces and serum using liquid chromatography-mass spectrometry and obtained intestinal transcriptomic profiles via bulk-RNA sequencing. When comparing LGG-monocolonized mice with germ-free mice, we found a synergy between LGG and dietary trp in markedly promoting the transcriptome of fatty acid metabolism and ß-oxidation. Upregulation was specific and was not observed in transcriptomes of trp-fed conventional mice and mice monocolonized with Ruminococcus gnavus. Metabolomics showed that fecal and serum metabolites were also modified by LGG-host-trp interaction. We developed an R-Script-based MEtabolome-TRanscriptome Correlation Analysis algorithm and uncovered LGG- and trp-dependent metabolites that were positively or negatively correlated with fatty acid metabolism and ß-oxidation gene networks. This high-throughput metabolome-transcriptome correlation strategy can be used in similar investigations to reveal potential interactions between specific metabolites and functional or disease-related transcriptomic networks.


Assuntos
Microbioma Gastrointestinal , Lacticaseibacillus rhamnosus , Camundongos , Animais , Intestinos , Microbioma Gastrointestinal/genética , Perfilação da Expressão Gênica , Ácidos Graxos
2.
Cell Mol Gastroenterol Hepatol ; 18(2): 101346, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38641207

RESUMO

BACKGROUND & AIMS: Lacticaseibacillus rhamnosus GG (LGG) is the world's most consumed probiotic but its mechanism of action on intestinal permeability and differentiation along with its interactions with an essential source of signaling metabolites, dietary tryptophan (trp), are unclear. METHODS: Untargeted metabolomic and transcriptomic analyses were performed in LGG monocolonized germ-free mice fed trp-free or -sufficient diets. LGG-derived metabolites were profiled in vitro under anaerobic and aerobic conditions. Multiomic correlations using a newly developed algorithm discovered novel metabolites tightly linked to tight junction and cell differentiation genes whose abundances were regulated by LGG and dietary trp. Barrier-modulation by these metabolites were functionally tested in Caco2 cells, mouse enteroids, and dextran sulfate sodium experimental colitis. The contribution of these metabolites to barrier protection is delineated at specific tight junction proteins and enterocyte-promoting factors with gain and loss of function approaches. RESULTS: LGG, strictly with dietary trp, promotes the enterocyte program and expression of tight junction genes, particularly Ocln. Functional evaluations of fecal and serum metabolites synergistically stimulated by LGG and trp revealed a novel vitamin B3 metabolism pathway, with methylnicotinamide (MNA) unexpectedly being the most robust barrier-protective metabolite in vitro and in vivo. Reduced serum MNA is significantly associated with increased disease activity in patients with inflammatory bowel disease. Exogenous MNA enhances gut barrier in homeostasis and robustly promotes colonic healing in dextran sulfate sodium colitis. MNA is sufficient to promote intestinal epithelial Ocln and RNF43, a master inhibitor of Wnt. Blocking trp or vitamin B3 absorption abolishes barrier recovery in vivo. CONCLUSIONS: Our study uncovers a novel LGG-regulated dietary trp-dependent production of MNA that protects the gut barrier against colitis.


Assuntos
Colite , Lacticaseibacillus rhamnosus , Probióticos , Triptofano , Animais , Lacticaseibacillus rhamnosus/metabolismo , Lacticaseibacillus rhamnosus/fisiologia , Triptofano/metabolismo , Camundongos , Humanos , Células CACO-2 , Probióticos/administração & dosagem , Colite/metabolismo , Colite/patologia , Mucosa Intestinal/metabolismo , Enterócitos/metabolismo , Sulfato de Dextrana , Niacinamida/farmacologia , Niacinamida/metabolismo , Junções Íntimas/metabolismo , Masculino , Modelos Animais de Doenças , Proteínas de Junções Íntimas/metabolismo
3.
Exp Mol Med ; 52(4): 629-642, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32280134

RESUMO

Glioblastomas (GBMs) are characterized by four subtypes, proneural (PN), neural, classical, and mesenchymal (MES) GBMs, and they all have distinct activated signaling pathways. Among the subtypes, PN and MES GBMs show mutually exclusive genetic signatures, and the MES phenotype is, in general, believed to be associated with more aggressive features of GBM: tumor recurrence and drug resistance. Therefore, targeting MES GBMs would improve the overall prognosis of patients with fatal tumors. In this study, we propose peroxisome proliferator-activated receptor gamma (PPARγ) as a potential diagnostic and prognostic biomarker as well as therapeutic target for MES GBM; we used multiple approaches to assess PPARγ, including biostatistics analysis and assessment of preclinical studies. First, we found that PPARγ was exclusively expressed in MES glioblastoma stem cells (GSCs), and ligand activation of endogenous PPARγ suppressed cell growth and stemness in MES GSCs. Further in vivo studies involving orthotopic and heterotopic xenograft mouse models confirmed the therapeutic efficacy of targeting PPARγ; compared to control mice, those that received ligand treatment exhibited longer survival as well as decreased tumor burden. Mechanistically, PPARγ activation suppressed proneural-mesenchymal transition (PMT) by inhibiting the STAT3 signaling pathway. Biostatistical analysis using The Cancer Genomics Atlas (TCGA, n = 206) and REMBRANDT (n = 329) revealed that PPARγ upregulation is linked to poor overall survival and disease-free survival of GBM patients. Analysis was performed on prospective (n = 2) and retrospective (n = 6) GBM patient tissues, and we finally confirmed that PPARγ expression was distinctly upregulated in MES GBM. Collectively, this study provides insight into PPARγ as a potential therapeutic target for patients with MES GBM.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais/antagonistas & inibidores , Glioblastoma/metabolismo , PPAR gama/antagonistas & inibidores , PPAR gama/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioblastoma/diagnóstico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Humanos , Camundongos , PPAR gama/genética , Prognóstico , RNA Interferente Pequeno/genética , Transdução de Sinais , Transcriptoma , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA