Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
iScience ; 25(8): 104677, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35847553

RESUMO

Predicting the potential for species adaption to climate change is challenged by the need to identify the physiological mechanisms that underpin species vulnerability. Here, we investigated the sensitivity to ocean acidification in marine mussels during early development, and specifically the trochophore stage. Using RNA and DNA sequencing and in situ RNA hybridization, we identified developmental processes associated with abnormal development and rapid adaptation to low pH. Trochophores exposed to low pH seawater exhibited 43 differentially expressed genes. Gene annotation and in situ hybridization of differentially expressed genes point to pH sensitivity of (1) shell field development and (2) cellular stress response. Five genes within these two processes exhibited shifts in allele frequencies indicative of a potential for rapid adaptation. This case study contributes direct evidence that protecting species' existing genetic diversity is a critical management action to facilitate species resilience to climate change.

2.
Ecol Evol ; 10(24): 13883-13894, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33391688

RESUMO

Intraspecific competition plays an important role for territory acquisition and occupancy, in turn affecting individual fitness. Thus, understanding the drivers of intraspecific aggression can increase our understanding of population dynamics. Here, we investigated intraspecific aggression in Eurasian (Castor fiber) and North American (Castor canadensis) beavers that are both monogamous, territorial mammals. Combined, we examined tail scars from >1,000 beavers (>2,000 capture events) as part of two long-term studies in Norway and the USA. We investigated the influence of landscape structure, population density, sex, age, and (for Eurasian beavers only) social status and group size on the number of tail scars caused by conspecifics. The number of tail scars was affected by population density in well-connected landscape types (large lakes and rivers), but not in more isolated areas (ponds), where individuals generally had fewer tail scars. Further, the relationship of population density was not linear. In the North American beaver population occurring in large lakes, intraspecific aggression increased with population density. Conversely, in the saturated Eurasian beaver population, intraspecific aggression was in a negative relationship with population density (except at the highest densities), likely due to inverse density-dependent intruder pressure via dispersers. Our findings emphasize that population density can affect intraspecific aggression depending on landscape structure, which might have important consequences for local patterns of dispersal, mate change, and territory occupancy, all of which can affect population dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA