Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Zoolog Sci ; 40(6): 455-462, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38064372

RESUMO

Aquaporin (AQP) 7 and AQP9 are membrane channel proteins called aquaglyceroporins and are related to glucose and lipid metabolism. AQP7 is mainly expressed in white adipose tissue (WAT) and is involved in releasing glycerol into the bloodstream. AQP9 is the glycerol channel in the liver that supplies glycerol to the hepatic cells. In this study, we investigated the relationship between the expression of aquaglyceroporins and lifestyle-related diseases, such as obesity and fatty liver, using 22-week-old db/db mice. Body weight, WAT, and liver weight showed increases in db/db mice. The levels of liver lipids, plasma lipids, insulin, and leptin were also increased in db/db mice. Gene expression related to fatty acid and triglyceride synthesis in the liver was enhanced in db/db mice. In addition, gene and protein expression of gluconeogenesis-related enzymes was increased. Conversely, lipolysis-related gene expression in WAT was reduced. In the db/db mice, AQP9 expression in the liver was raised; however, AQP7 expression in WAT was reduced. These results suggest that in db/db mice, enhanced hepatic AQP9 expression increased the supply of glycerol to the liver and induced fatty liver and hyperglycemia. Additionally, reduced AQP7 expression in WAT is associated with excessive lipid accumulation in adipocytes. Aquaglyceroporins are essential molecules for glucose and lipid metabolism, and may be potential target molecules for the treatment of obesity and lifestyle-related diseases.


Assuntos
Aquagliceroporinas , Aquaporinas , Fígado Gorduroso , Obesidade , Animais , Camundongos , Aquagliceroporinas/genética , Aquagliceroporinas/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Glucose/metabolismo , Glicerol/metabolismo , Lipídeos , Fígado/metabolismo , Obesidade/genética , Obesidade/metabolismo
2.
Anal Bioanal Chem ; 414(2): 1049-1059, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34686896

RESUMO

In this study, eight types of bacteria were cultivated, including Staphylococcus aureus. The infrared absorption spectra of the gas surrounding cultured bacteria were recorded at a resolution of 0.5 cm-1 over the wavenumber range of 7500-500 cm-1. From these spectra, we searched for the infrared wavenumbers at which characteristic absorptions of the gas surrounding Staphylococcus aureus could be measured. This paper reports two wavenumber regions, 6516-6506 cm-1 and 2166-2158 cm-1. A decision tree-based machine learning algorithm was used to search for these wavenumber regions. The peak intensity or the absorbance difference was calculated for each region, and the ratio between them was obtained. When these ratios were used as training data, decision trees were created to classify the gas surrounding Staphylococcus aureus and the gas surrounding other bacteria into different groups. These decision trees show the potential effectiveness of using absorbance measurement at two wavenumber regions in finding Staphylococcus aureus.


Assuntos
Árvores de Decisões , Gases/química , Espectrofotometria Infravermelho/métodos , Staphylococcus aureus/isolamento & purificação , Algoritmos , Aprendizado de Máquina , Odorantes
3.
Pflugers Arch ; 471(11-12): 1419-1439, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31631251

RESUMO

Paired-like homeobox gene Phox2b is predominantly expressed in pre-inspiratory neurons in the parafacial respiratory group (pFRG) in newborn rat rostral ventrolateral medulla. To analyse detailed local networks of the respiratory centre using optogenetics, the effects of selective activation of Phox2b-positive neurons in the ventral medulla on respiratory rhythm generation were examined in brainstem-spinal cord preparations isolated from transgenic newborn rats with Phox2b-positive cells expressing channelrhodopsin variant ChRFR(C167A). Photostimulation up to 43 s increased the respiratory rate > 200% of control, whereas short photostimulation (1.5 s) of the rostral pFRG reset the respiratory rhythm. At the cellular level, photostimulation depolarised Phox2b-positive pre-inspiratory, inspiratory and respiratory-modulated tonic neurons and Phox2b-negative pre-inspiratory neurons. In contrast, changes in membrane potential of Phox2b-negative inspiratory and expiratory neurons varied depending on characteristics of ongoing synaptic connections in local respiratory networks in the rostral medulla. In the presence of tetrodotoxin, photostimulation depolarised Phox2b-positive cells, but caused no significant changes in membrane potential of Phox2b-negative cells. We concluded that depolarisation of Phox2b-positive neurons was due to cell-autonomous photo-activation and summation of excitatory postsynaptic potentials, whereas membrane potential changes of Phox2b-negative neurons depended on the network configuration. Our findings shed further light on local networks among respiratory-related neurons in the rostral ventrolateral medulla and emphasise the important role of pre-inspiratory neurons in respiratory rhythm generation in the neonatal rat en bloc preparation.


Assuntos
Channelrhodopsins/metabolismo , Proteínas de Homeodomínio/metabolismo , Bulbo/metabolismo , Neurônios/metabolismo , Centro Respiratório/metabolismo , Fatores de Transcrição/metabolismo , Animais , Animais Recém-Nascidos , Tronco Encefálico/metabolismo , Feminino , Masculino , Potenciais da Membrana/fisiologia , Optogenética/métodos , Ratos , Respiração , Tetrodotoxina/metabolismo
4.
Int J Mol Sci ; 20(16)2019 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-31426531

RESUMO

Pneumonitis is the leading cause of death associated with the use of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (EGFR-TKIs) against non-small cell lung cancer (NSCLC). However, the risk factors and the mechanism underlying this toxicity have not been elucidated. Tumor necrosis factor (TNF) has been reported to transactivate EGFR in pulmonary epithelial cells. Hence, we aimed to test the hypothesis that EGFR tyrosine kinase activity regulates TNF-mediated bronchial epithelial cell survival, and that inhibition of EGFR activity increases TNF-induced lung epithelial cell apoptosis. We used surfactant protein C (SPC)-TNF transgenic (tg) mice which overexpress TNF in the lungs. In this model, gefitinib, an EGFR-TKI, enhanced lung epithelial cell apoptosis and lymphocytic inflammation, indicating that EGFR tyrosine kinase prevents TNF-induced lung injury. Furthermore, IL-17A was significantly upregulated by gefitinib in SPC-TNF tg mice and p38MAPK activation was observed, indicative of a pathway involved in lung epithelial cell apoptosis. Moreover, in lung epithelial cells, BEAS-2B, TNF stimulated EGFR transactivation via the TNF-α-converting enzyme in a manner that requires heparin binding (HB)-EGF and transforming growth factor (TGF)-α. These novel findings have significant implications in understanding the role of EGFR in maintaining human bronchial epithelial cell homeostasis and in NSCLC treatment.


Assuntos
Apoptose , Células Epiteliais/metabolismo , Gefitinibe/efeitos adversos , Lesão Pulmonar/metabolismo , Pneumonia/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína ADAM17/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/fisiologia , Receptores ErbB/metabolismo , Gefitinibe/uso terapêutico , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/fisiologia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/fisiopatologia , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Camundongos Transgênicos , Modelos Animais , Pneumonia/induzido quimicamente , Pneumonia/fisiopatologia , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/uso terapêutico , Fator de Crescimento Transformador alfa , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
5.
Development ; 142(24): 4299-308, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26511926

RESUMO

The dosage difference of X-linked genes between the sexes in mammals is compensated for by genetic inactivation of one of the X chromosomes in XX females. A noncoding RNA transcribed from the Xist gene at the onset of X chromosome inactivation coats the X chromosome in cis and induces chromosome-wide heterochromatinization. Here, we report a new Xist allele (Xist(CAG)) driven by a CAG promoter, which is known to be constitutively active in many types of cells. The paternal transmission of Xist(CAG) resulted in the preferential inactivation of the targeted paternal X (Xp) not only in the extra-embryonic but also the embryonic lineage, whereas maternal transmission ended with embryonic lethality at the early postimplantation stage with a phenotype that resembled mutant embryos carrying a maternal deficiency in Tsix, an antisense negative regulator of Xist, in both sexes. Interestingly, we found that the upregulation of Xist(CAG) in preimplantation embryos temporally differed depending on its parental origin: its expression started at the 4- to 8-cell stages when paternally inherited, and Xist(CAG) was upregulated at the blastocyst stage when maternally inherited. This might indicate that the Xist locus on Xp is permissive to transcription, but the Xist locus on the maternal X (Xm) is not. We extrapolated from these findings that the maternal Xist allele might manifest a chromatin structure inaccessible by transcription factors relative to the paternal allele. This might underlie the mechanism for the maternal repression of Xist at the early cleavage stage when Tsix expression has not yet occurred on Xm.


Assuntos
Alelos , Loci Gênicos , Regiões Promotoras Genéticas , RNA Longo não Codificante/genética , Animais , Blastocisto/metabolismo , Metilação de DNA/genética , Regulação para Baixo/genética , Embrião de Mamíferos/metabolismo , Feminino , Feto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/metabolismo , Padrões de Herança/genética , Camundongos , Mutação/genética , Oogênese , Fenótipo , Regulação para Cima/genética , Cromossomo X/genética , Inativação do Cromossomo X/genética
6.
Circ Res ; 116(7): 1170-81, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25648699

RESUMO

RATIONALE: Janus kinase/signal transducer and activator of transcription (JAK/STAT) signals and their endogenous inhibitor, suppressor of cytokine signaling 3 (SOCS3), in vascular endothelial cells (ECs) reportedly dominate the pathological angiogenesis. However, how these inflammatory signals are potentiated during pathological angiogenesis has not been fully elucidated. We suspected that an intracellular protease calpain, which composes the multifunctional proteolytic systems together with its endogenous inhibitor calpastatin (CAST), contributes to the JAK/STAT regulations. OBJECTIVE: To specify the effect of EC calpain/CAST systems on JAK/STAT signals and their relationship with pathological angiogenesis. METHODS AND RESULTS: The loss of CAST, which is ensured by several growth factor classes, was detectable in neovessels in murine allograft tumors, some human malignant tissues, and oxygen-induced retinopathy lesions in mice. EC-specific transgenic introduction of CAST caused downregulation of JAK/STAT signals, upregulation of SOCS3 expression, and depletion of vascular endothelial growth factor (VEGF)-C, thereby counteracting unstable pathological neovessels and disease progression in tumors and oxygen-induced retinopathy lesions in mice. Neutralizing antibody against VEGF-C ameliorated pathological angiogenesis in oxygen-induced retinopathy lesions. Small interfering RNA-based silencing of endogenous CAST in cultured ECs facilitated µ-calpain-induced proteolytic degradation of SOCS3, leading to VEGF-C production through amplified interleukin-6-driven STAT3 signals. Interleukin-6-induced angiogenic tube formation in cultured ECs was accelerated by CAST silencing, which is suppressible by pharmacological inhibition of JAK/STAT signals, antibody-based blockage of VEGF-C, and transfection of calpain-resistant SOCS3, whereas transfection of wild-type SOCS3 exhibited modest angiostatic effects. CONCLUSIONS: Loss of CAST in angiogenic ECs facilitates µ-calpain-induced SOCS3 degradation, which amplifies pathological angiogenesis through interleukin-6/STAT3/VEGF-C axis.


Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Calpaína/metabolismo , Células Endoteliais/metabolismo , Neoplasias/irrigação sanguínea , Proteínas Supressoras da Sinalização de Citocina/antagonistas & inibidores , Adenocarcinoma/irrigação sanguínea , Sequência de Aminoácidos , Animais , Aorta , Proteínas de Ligação ao Cálcio/genética , Carcinoma Pulmonar de Lewis/irrigação sanguínea , Células Cultivadas , Citocinas/fisiologia , Feminino , Glioblastoma/irrigação sanguínea , Humanos , Janus Quinases/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Neovascularização Patológica/fisiopatologia , Proteínas Recombinantes de Fusão/metabolismo , Retinopatia da Prematuridade/fisiopatologia , Fatores de Transcrição STAT/fisiologia , Transdução de Sinais/fisiologia , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/fisiologia , Fator C de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator C de Crescimento do Endotélio Vascular/fisiologia
7.
Biochem Biophys Res Commun ; 464(4): 1209-1214, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26225748

RESUMO

In embryos, neural crest cells emerge from the dorsal region of the fusing neural tube and migrate throughout tissues to differentiate into various types of cells including osteoblasts. In adults, subsets of neural crest-derived cells (NCDCs) reside as stem cells and are considered to be useful cell sources for regenerative medicine strategies. Numerous studies have suggested that stem cells with a neural crest origin persist into adulthood, especially those within the mammalian craniofacial compartment. However, their distribution as well as capacity to differentiate into osteoblasts in adults is not fully understood. To analyze the precise distribution and characteristics of NCDCs in adult oral tissues, we utilized an established line of double transgenic (P0-Cre/CAG-CAT-EGFP) mice in which NCDCs express green fluorescent protein (GFP) throughout their life. GFP-positive cells were scattered like islands throughout tissues of the palate, gingiva, tongue, and buccal mucosa in adult mice, with those isolated from the latter shown to form spheres, typical cell clusters composed of stem cells, under low-adherent conditions. Furthermore, GFP-positive cells had markedly increased alkaline phosphatase (a marker enzyme of osteoblast differentiation) activity and mineralization as shown by alizarin red staining, in the presence of bone morphogenetic protein (BMP)-2. These results suggest that NCDCs reside in various adult oral tissues and possess potential to differentiate into osteoblastic cells. NCDCs in adults may be a useful cell source for bone regeneration strategies.


Assuntos
Boca/citologia , Boca/fisiologia , Crista Neural/citologia , Crista Neural/fisiologia , Osteoblastos/citologia , Osteoblastos/fisiologia , Envelhecimento/patologia , Animais , Adesão Celular/fisiologia , Diferenciação Celular/fisiologia , Células Cultivadas , Camundongos , Camundongos Transgênicos , Osteogênese/fisiologia
8.
Eur J Neurosci ; 37(3): 407-16, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23136967

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide expressed widely in nervous tissues. PACAP-knockout ((-/-)) mice display a sudden infant death syndrome (SIDS)-like phenotype, although the underlying physiological mechanism to explain this remains unclear. Here, we report on the presence of abnormal respiratory activity in PACAP(-/-) mice under hypoxic conditions, which provides a basis for the SIDS-like phenotype. PACAP(-/-) mice display a lowered baseline respiratory activity compared with wild-type animals, and an abnormal response to hypoxia. More specifically, PACAP(-/-) mice at postnatal day 7 showed respiratory arrest in response to hypoxia. In contrast, their response to hypercapnic conditions was the same as that of wild-type mice. Histological and real-time PCR analyses indicated that the catecholaminergic system in the medulla oblongata was impaired in PACAP(-/-) mice, suggesting that endogenous PACAP affects respiratory centers in the medulla oblongata via its action on the catecholaminergic system. We propose that disruption of this system is involved in the SIDS-like phenotype of PACAP(-/-) mice. Thus, disorders of the catecholaminergic system involved with O(2) sensing could be implicated in underlying neuronal mechanisms responsible for SIDS.


Assuntos
Morte Súbita/etiologia , Hipóxia/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Centro Respiratório/fisiopatologia , Animais , Animais Recém-Nascidos , Catecolaminas/metabolismo , Expressão Gênica , Hipercapnia/fisiopatologia , Hipóxia/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Respiração/genética , Centro Respiratório/enzimologia , Centro Respiratório/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
9.
Circulation ; 124(23): 2522-32, 2011 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-22064597

RESUMO

BACKGROUND: Although dysfunction of VE-cadherin-mediated adherence junctions in vascular endothelial cells (ECs) is thought to be one of the initial steps of atherosclerosis, little is known regarding how VE-cadherin is disrupted during atherogenic development. This study focused on the role of calpain, an intracellular cysteine protease, in the proteolytic disorganization of VE-cadherin and subsequent progression of atherosclerosis. METHODS AND RESULTS: Increased expression of m-calpain was observed in aortic ECs in atherosclerotic lesions in humans and low-density lipoprotein receptor-deficient (ldlr(-/-)) mice. Furthermore, proteolytic disorganization of VE-cadherin was shown in aortic ECs in ldlr(-/-) and apolipoprotein E-deficient (apoE(-/-)) mice. Long-term administration of calpain inhibitors into these mice attenuated atherosclerotic lesion development and proinflammatory responses, as well as VE-cadherin disorganization, without normalization of plasma lipid profiles. Furthermore, in vivo transfection of m-calpain siRNA to ldlr(-/-) mice prevented disorganization of VE-cadherin and proatherogenic hyperpermeability in aortic ECs. Treatment of cultured ECs with oxidized LDL, lysophosphatidylcholine, or LDL pretreated with secreted phospholipase A(2) led to the induction of m-calpain but not of µ-calpain, thereby eliciting selective m-calpain overactivation. These data suggest that lysophosphatidylcholine-induced m-calpain directly cleaves a juxtamembrane region of VE-cadherin, resulting in dissociation of ß-catenin from the VE-cadherin complex, disorganization of adherence junctions, and hyperpermeability in ECs. CONCLUSIONS: Subtype-selective induction of m-calpain in aortic ECs during atherosclerotic progression is associated with proteolytic disorganization of VE-cadherin and proatherogenic hyperpermeability in cells. Thus, a strategy to selectively inhibit m-calpain may be useful for the therapeutic treatment of patients with atherosclerosis.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Calpaína/metabolismo , Células Endoteliais/enzimologia , Placa Aterosclerótica/metabolismo , Adulto , Idoso , Animais , Aorta/citologia , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Permeabilidade Capilar/fisiologia , Progressão da Doença , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Lisofosfatidilcolinas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Pessoa de Meia-Idade , Placa Aterosclerótica/etiologia , Placa Aterosclerótica/patologia , RNA Interferente Pequeno/farmacologia , Receptores de LDL/genética , Receptores de LDL/metabolismo
10.
J Microbiol Methods ; 196: 106474, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35472329

RESUMO

Gas samples were collected from the air surrounding single and mixed laboratory cultures, and preliminary data on human breath samples were also obtained. The infrared spectra of a variety of gasses were measured at high resolution (0.5 cm-1) to obtain information about the infrared absorption bands to be used as indicators. These key bands enable bacterial classification, and the discrimination rates can be improved by observing multiple infrared absorptions. The air around Pseudomonas aeruginosa was distinguished from the other gas samples by the infrared absorptions at wavenumbers of 778.4 cm-1 and 2213.2 cm-1. For Acinetobacter baumannii, infrared absorptions at 1215.0 cm-1 and 2982.3 cm-1 were used; furthermore, adding those at 4768.7 cm-1 and 5353.8 cm-1 was shown to improve identification.


Assuntos
Acinetobacter baumannii , Infecções por Pseudomonas , Antibacterianos/uso terapêutico , Gases , Humanos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa , Espectrofotometria Infravermelho
11.
J Vet Med Sci ; 83(7): 1155-1160, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34053976

RESUMO

The aim of this study is to examine 1) muscle fiber type composition, 2) myofiber diameter, and 3) aquaporin (AQP) 7 and AQP 9 mRNA expressions by quantitative PCR in muscles of obese db/db mice. The myofiber type composition of skeletal muscle was not statistically significantly different between db/db mice and control mice; while the average myofiber diameter ratio showed a decrease in db/db mice. The expression of AQP7 but not AQP9 mRNA in the skeletal and cardiac muscles was significantly upregulated in db/db mice. Thus this study revealed quantitatively that type 2 myofiber atrophy was shown in the skeletal muscles of db/db mice. AQP7 mRNA expression was upregulated in the skeletal and cardiac muscles of db/db mice.


Assuntos
Fibras Musculares Esqueléticas , Doenças dos Roedores , Animais , Camundongos , Camundongos Endogâmicos , Miocárdio , Obesidade/genética , Obesidade/veterinária , RNA Mensageiro/genética
12.
J Neurosci ; 29(9): 2984-96, 2009 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-19261893

RESUMO

Down syndrome cell adhesion molecule (DSCAM) is a neural adhesion molecule that plays diverse roles in neural development. We disrupted the Dscam locus in mice and found that the null mutants (Dscam(-/-)) died within 24 h after birth. Whole-body plethysmography showed irregular respiration and lower ventilatory response to hypercapnia in the null mutants. Furthermore, a medulla-spinal cord preparation of Dscam(-/-) mice showed that the C4 ventral root activity, which drives diaphragm contraction for inspiration, had an irregular rhythm with frequent apneas. Optical imaging of the preparation using voltage-sensitive dye revealed that the pre-inspiratory neurons located in the rostral ventrolateral medulla and belonging to the rhythm generator for respiration, lost their synchroneity in Dscam(-/-) mice. Dscam(+/-) mice, which survived to adulthood without any overt abnormalities, also showed irregular respiration but milder than Dscam(-/-) mice. These results suggest that DSCAM plays a critical role in central respiratory regulation in a dosage-dependent manner.


Assuntos
Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/fisiologia , Neurônios/fisiologia , Sistema Respiratório/inervação , Animais , Animais Recém-Nascidos , Northern Blotting , Morte , Eletrofisiologia , Eletroporação , Gânglios Espinais/citologia , Gânglios Espinais/fisiologia , Frequência Cardíaca/fisiologia , Hipercapnia/patologia , Hipercapnia/fisiopatologia , Hibridização In Situ , Bulbo/anormalidades , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuritos/fisiologia , Pletismografia Total , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Mecânica Respiratória/fisiologia
13.
J Biol Chem ; 284(47): 32522-32, 2009 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-19783653

RESUMO

Phospholipid hydroperoxide glutathione peroxidase (GPx4) is an intracellular antioxidant enzyme that directly reduces peroxidized phospholipids. GPx4 is strongly expressed in the mitochondria of testis and spermatozoa. We previously found a significant decrease in the expression of GPx4 in spermatozoa from 30% of infertile human males diagnosed with oligoasthenozoospermia (Imai, H., Suzuki, K., Ishizaka, K., Ichinose, S., Oshima, H., Okayasu, I., Emoto, K., Umeda, M., and Nakagawa, Y. (2001) Biol. Reprod. 64, 674-683). To clarify whether defective GPx4 in spermatocytes causes male infertility, we established spermatocyte-specific GPx4 knock-out mice using a Cre-loxP system. All the spermatocyte-specific GPx4 knock-out male mice were found to be infertile despite normal plug formation after mating and displayed a significant decrease in the number of spermatozoa. Isolated epididymal GPx4-null spermatozoa could not fertilize oocytes in vitro. These spermatozoa showed significant reductions of forward motility and the mitochondrial membrane potential. These impairments were accompanied by the structural abnormality, such as a hairpin-like flagella bend at the midpiece and swelling of mitochondria in the spermatozoa. These results demonstrate that the depletion of GPx4 in spermatocytes causes severe abnormalities in spermatozoa. This may be one of the causes of male infertility in mice and humans.


Assuntos
Glutationa Peroxidase/metabolismo , Infertilidade Masculina/enzimologia , Espermatócitos/enzimologia , Animais , Epididimo/metabolismo , Feminino , Fertilização in vitro , Masculino , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Espécies Reativas de Oxigênio , Fatores de Tempo
14.
Arterioscler Thromb Vasc Biol ; 29(1): 33-9, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18988894

RESUMO

BACKGROUND: Plasma level of oxidized low-density lipoprotein (OxLDL) is a risk marker for cardiovascular diseases. The behavior of plasma OxLDL before disease progression has not been studied previously. METHODS AND RESULTS: In this study, we developed a sensitive ELISA procedure for detecting mouse circulating OxLDL using a monoclonal antibody that recognizes oxidized phosphatidylcholine and a rabbit antimouse apolipoprotein B-48 polyclonal antibody. Apolipoprotein E knockout mice were fed on a chow diet for 40 weeks. Oil red O-positive lesions developed gradually by 20 weeks, and the percentage area covered by the lesions increased dramatically after 28 weeks; it covers 33.4% of the surface area by 40 weeks. The OxLDL level, measured after LDL fraction was isolated from each mouse, at 10 weeks was 0.015 ng/microg LDL. It increased 3-fold at 20 weeks of age and then decreased to the basal level by 40 weeks of age, suggesting that OxLDL appears before the development of atherosclerotic lesions. The occurrence of lipid peroxidation products, acrolein and oxidized phosphatidylcholines, in aortic tissue were revealed by immunohistochemical staining as early as 10 weeks. CONCLUSIONS: These results suggest that OxLDL might be involved in the early stages of progression of atherosclerotic lesions.


Assuntos
Apolipoproteínas E/deficiência , Aterosclerose/fisiopatologia , Lipoproteínas LDL/sangue , Idoso , Animais , Aorta Torácica/citologia , Aorta Torácica/patologia , Aterosclerose/sangue , Aterosclerose/patologia , Modelos Animais de Doenças , Progressão da Doença , Ensaio de Imunoadsorção Enzimática , Humanos , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Especificidade da Espécie
15.
Adv Exp Med Biol ; 669: 21-4, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20217313

RESUMO

To define the mechanisms of human congenital central respiratory failure, we are examining gene-deficient mice with central respiratory failure. However, the influence of the genetic background of the mice may play an important role in the phenotype of the mice. Therefore, we examined developmental respiratory adaptation in several mouse strains. Neonatal mice from P0 to P3 were examined by whole-body plethysmography and the electro- physiological analysis using brainstem-spinal cord preparations. Our results show that respiratory maturation becomes progressively fixed after birth and that the rate of progression depends on the genetic background of the mice. In particular, the progression of C57BL/6 mice was delayed compared to that of BALB/c mice.


Assuntos
Modelos Animais de Doenças , Insuficiência Respiratória/genética , Insuficiência Respiratória/fisiopatologia , Adaptação Fisiológica , Animais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ventilação Pulmonar , Mecânica Respiratória , Especificidade da Espécie
16.
Adv Exp Med Biol ; 669: 15-9, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20217312

RESUMO

Down syndrome cell adhesion molecule (DSCAM) is a neural adhesion molecule that plays diverse roles in neural development. We disrupted the Dscam locus in mice and found that the null mutants (Dscam (-/-)) died within 24 hours after birth. Whole body plethysmography showed irregular respiration and lower ventilatory response to hypercapnia in the null mutants. Further, a medulla-spinal cord preparation of Dscam (-/-) mice showed that the C4 ventral root activity, which drives diaphragm contraction for inspiration, had an irregular rhythm with frequent apneas. Optical imaging of the preparation using voltage-sensitive dye revealed that the pre-inspiratory (Pre-I) neurons located in the rostral ventrolateral medulla (RVLM) and belonging to the rhythm generator for respiration, lost their synchroneity in Dscam (-/-) mice. Dscam (+/-) mice, which survived to adulthood without any overt abnormalities, also showed irregular respiration but milder than Dscam (-/-) mice. These results suggest that DSCAM plays a critical role in central respiratory regulation in a dosage-dependent manner. These results have been published (Amano et al. 2009).


Assuntos
Moléculas de Adesão Celular/deficiência , Inalação/fisiologia , Neurônios/patologia , Animais , Animais Recém-Nascidos/fisiologia , Tronco Encefálico/patologia , Tronco Encefálico/fisiopatologia , Moléculas de Adesão Celular/genética , Camundongos
17.
Exp Anim ; 69(2): 207-218, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31852850

RESUMO

Mice housed in an enriched environment (EE) have inhibited tumor development because of eustress (positive stress) stimulation. However, the mechanisms underlying increased cancer resistance in EEs remain unclear; this may be due to poor reproducibility of the results because of the complicated EE assembly requirements. In this study, we examined the effects of a simplified EE (sEE) model, consisting only of a nesting shelter and a running wheel, on cancer development in mice. We found that, similar to the complex EE, the sEE promoted motor function and alleviated anxiety in mice. Moreover, the mice housed in the sEE showed inhibited tumor growth and metastasis in addition to a higher average body temperature (especially at the point of transition from light to darkness). Furthermore, mice in the sEE had a decreased brown adipose tissue (BAT) mass, with a significant upregulation of the Ucp1 and Adrb3 genes (which encode uncoupling protein 1 and ß-adrenergic receptor, respectively) observed in the BAT at the point of transition from light to darkness. An antibody against the immune checkpoint protein programmed cell death 1 was also found to have an additive effect with the sEE against tumor development. Our findings indicate that the established sEE model may be a useful tool for studying the antitumor effects of eustress and can potentially introduce new avenues for cancer prevention and treatment.


Assuntos
Temperatura Corporal , Meio Ambiente , Neoplasias/prevenção & controle , Animais , Camundongos
18.
Brain Res Bull ; 152: 107-116, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31301380

RESUMO

Pax6 is an important transcription factor expressed in several discrete domains of the developing central nervous system. It has been reported that Pax6 is involved in the specification of subtypes of hindbrain motor neurons. Pax6 homozygous mutant (rSey2/rSey2) rats die soon after birth, probably due to impaired respiratory movement. To determine whether the respiratory center in the medulla functions normally, we analyzed the histological and neurophysiological properties of the medulla and spinal cord in fetal rats with this mutation. First, the medulla of rSey2/rSey2 at embryonic (E) 21.5-E22.5 tended to be smaller than those from heterozygous mutant (rSey2/+) and wild-type (+/+) littermates. Through immunohistochemical analysis, we confirmed normal distribution of Phox2b-expressing cells in the parafacial respiratory group (pFRG) of rSey2/rSey2 rats. Expression of neurokinin-1 receptor (NK-1R) was weak and dispersed in rSey2/rSey2 rats. In addition, rSey2/rSey2 rats have a defect of the hypoglossal nerve root. Electrophysiological analysis using brainstem-spinal cord preparations (E21.5-E22.5) revealed that rSey2/rSey2 rats showed larger fluctuation of the amplitude of inspiratory activity monitored from the fourth cervical root although there was no significant difference in the respiratory rate among rSey2/rSey2, rSey2/+, and +/+ littermates. The response of respiratory rhythm to high CO2 was similar among all genotypes. Optical recordings of neuronal activity revealed that the activity of the pFRG tended to be weaker and inspiratory activity appeared in more scattered areas in the caudal ventral medulla in the rSey2/rSey2 rats. These results suggest that the basal activity of the respiratory system was preserved with mild impairment of the inspiratory activity in the rSey2/rSey2 rats and that the Pax6 gene is involved in the functional development of the neuronal system producing effective inspiratory motor outputs for survival.


Assuntos
Fator de Transcrição PAX6/genética , Sistema Respiratório/embriologia , Sistema Respiratório/inervação , Animais , Animais Recém-Nascidos , Tronco Encefálico/metabolismo , Feminino , Feto , Proteínas de Homeodomínio/metabolismo , Masculino , Bulbo/metabolismo , Neurônios Motores/metabolismo , Fator de Transcrição PAX6/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores da Neurocinina-1/genética , Receptores da Neurocinina-1/metabolismo , Respiração , Centro Respiratório/metabolismo , Medula Espinal/metabolismo , Fatores de Transcrição/metabolismo
19.
Brain Res Bull ; 144: 39-45, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30448454

RESUMO

Preinspiratory (Pre-I) neurons in the parafacial respiratory group (pFRG) comprise one of the respiratory rhythm generators in the medulla of the neonatal rat. A subgroup of pFRG/Pre-I neurons expresses the transcription factor Phox2b. To further analyze detailed neuronal mechanisms of respiratory rhythm generation in the neonatal rat, we developed a transgenic (Tg) rat line in which Phox2b-positive cells expressed archaerhodopsin-3 (Arch). Brainstem-spinal cord preparations were isolated from 0-2-day-old Tg newborn rats and were superfused with artificial cerebrospinal fluid equilibrated with 95% O2 and 5% CO2, pH 7.4, at 25-26 °C. Inspiratory fourth cervical ventral root (C4) activity was monitored, and membrane potentials of neurons in the pFRG including Pre-I and inspiratory neurons were recorded. Phox2b-positive cells in the Tg rats were essentially positive for enhanced green fluorescent protein (EGFP) signals (reporter for Arch) in the pFRG. Continuous photo-stimulation of the rostral ventral medulla for up to 90 s by covering the pFRG with green laser light (532 nm) induced a decrease of respiratory rate measured at C4 accompanied by membrane hyperpolarization of Phox2b-positive pFRG/Pre-I neurons. In contrast, Phox2b-negative inspiratory neurons were not hyperpolarized during the photo-stimulation. Our findings showed that Phox2b-expressing pFRG/Pre-I neurons are involved in the maintenance of the basic respiratory rhythm in neonatal rat.


Assuntos
Proteínas Arqueais/biossíntese , Proteínas de Homeodomínio/metabolismo , Rede Nervosa/metabolismo , Centro Respiratório/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Animais , Animais Recém-Nascidos , Proteínas Arqueais/genética , Tronco Encefálico/metabolismo , Proteínas de Homeodomínio/biossíntese , Masculino , Bulbo/metabolismo , Neurônios/metabolismo , Ratos , Ratos Transgênicos , Respiração , Centro Respiratório/metabolismo , Medula Espinal/fisiologia , Fatores de Transcrição/biossíntese
20.
Mol Cancer Ther ; 18(1): 112-126, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30322949

RESUMO

The critical T790M mutation in EGFR, which mediates resistance to first- and second-generation EGFR tyrosine kinase inhibitors (TKI; gefitinib, erlotinib, and afatinib), has facilitated the development of third-generation mutation-selective EGFR TKIs (rociletinib and osimertinib). We previously reported heterogeneous afatinib-resistant mechanisms, including emergence of T790M-EGFR, and responses to third-generation EGFR TKIs. Here, we used afatinib-resistant lung adenocarcinoma cells [AfaR (formerly AFR3) cells], carrying exon 19 deletion/T790M in EGFR To identify the novel resistance mechanisms in post-afatinib treatment, RocR1/RocR2 and OsiR1/OsiR2 cells were established using increasing concentrations of rociletinib and osimertinib, respectively. Attenuation of exon 19 deletion and T790M was confirmed in both rociletinib-resistant cells; in addition, EGFR and KRAS amplification was observed in RocR1 and RocR2, respectively. Significant KRAS amplification was observed in the osimertinib-resistant cell lines, indicating a linear and reversible increase with increased osimertinib concentrations in OsiR1 and OsiR2 cells. OsiR1 cells maintained osimertinib resistance with KRAS amplification after osimertinib withdrawal for 2 months. OsiR2 cells exhibited KRAS attenuation, and osimertinib sensitivity was entirely recovered. Phospho-EGFR (Y1068) and growth factor receptor-bound protein 2 (GRB2)/son of sevenless homolog 1 (SOS1) complex was found to mediate osimertinib resistance in OsiR1 cells with sustained KRAS activation. After 2 months of osimertinib withdrawal, this complex was dissociated, and the EGFR signal, but not the GRB2/SOS1 signal, was activated. Concomitant inhibition of MAPK kinase and EGFR could overcome osimertinib resistance. Thus, we identified a heterogeneous acquired resistance mechanism for third-generation EGFR TKIs, providing insights into the development of novel treatment strategies.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Acrilamidas/farmacologia , Afatinib/farmacologia , Compostos de Anilina/farmacologia , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Receptores ErbB/genética , Feminino , Amplificação de Genes , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Transplante de Neoplasias , Pirimidinas/farmacologia , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA