Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Coll Cardiol ; 83(25): 2674-2689, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38897678

RESUMO

Iron deficiency and heart failure frequently co-occur, sparking clinical research into the role of iron repletion in this condition over the last 20 years. Although early nonrandomized studies and subsequent moderate-sized randomized controlled trials showed an improvement in symptoms and functional metrics with the use of intravenous iron, 3 recent larger trials powered to detect a difference in hard cardiovascular outcomes failed to meet their primary endpoints. Additionally, there are potential concerns related to side effects from intravenous iron, both in the short and long term. This review discusses the basics of iron biology and regulation, the diagnostic criteria for iron deficiency and the clinical evidence for intravenous iron in heart failure, safety concerns, and alternative therapies. We also make practical suggestions for the management of patients with iron deficiency and heart failure and outline key areas in need of future research.


Assuntos
Anemia Ferropriva , Insuficiência Cardíaca , Ferro , Humanos , Insuficiência Cardíaca/tratamento farmacológico , Anemia Ferropriva/tratamento farmacológico , Ferro/administração & dosagem , Administração Intravenosa , Deficiências de Ferro
2.
J Clin Invest ; 134(13)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722697

RESUMO

Newborn mammalian cardiomyocytes quickly transition from a fetal to an adult phenotype that utilizes mitochondrial oxidative phosphorylation but loses mitotic capacity. We tested whether forced reversal of adult cardiomyocytes back to a fetal glycolytic phenotype would restore proliferative capacity. We deleted Uqcrfs1 (mitochondrial Rieske iron-sulfur protein, RISP) in hearts of adult mice. As RISP protein decreased, heart mitochondrial function declined, and glucose utilization increased. Simultaneously, the hearts underwent hyperplastic remodeling during which cardiomyocyte number doubled without cellular hypertrophy. Cellular energy supply was preserved, AMPK activation was absent, and mTOR activation was evident. In ischemic hearts with RISP deletion, new cardiomyocytes migrated into the infarcted region, suggesting the potential for therapeutic cardiac regeneration. RNA sequencing revealed upregulation of genes associated with cardiac development and proliferation. Metabolomic analysis revealed a decrease in α-ketoglutarate (required for TET-mediated demethylation) and an increase in S-adenosylmethionine (required for methyltransferase activity). Analysis revealed an increase in methylated CpGs near gene transcriptional start sites. Genes that were both differentially expressed and differentially methylated were linked to upregulated cardiac developmental pathways. We conclude that decreased mitochondrial function and increased glucose utilization can restore mitotic capacity in adult cardiomyocytes, resulting in the generation of new heart cells, potentially through the modification of substrates that regulate epigenetic modification of genes required for proliferation.


Assuntos
Proliferação de Células , Mitocôndrias Cardíacas , Miócitos Cardíacos , Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Camundongos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/patologia , Camundongos Knockout , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/genética , Glucose/metabolismo
3.
JACC CardioOncol ; 5(6): 715-731, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38205010

RESUMO

Despite improvements in cancer survival, cancer therapy-related cardiovascular toxicity has risen to become a prominent clinical challenge. This has led to the growth of the burgeoning field of cardio-oncology, which aims to advance the cardiovascular health of cancer patients and survivors, through actionable and translatable science. In these Global Cardio-Oncology Symposium 2023 scientific symposium proceedings, we present a focused review on the mechanisms that contribute to common cardiovascular toxicities discussed at this meeting, the ongoing international collaborative efforts to improve patient outcomes, and the bidirectional challenges of translating basic research to clinical care. We acknowledge that there are many additional therapies that are of significance but were not topics of discussion at this symposium. We hope that through this symposium-based review we can highlight the knowledge gaps and clinical priorities to inform the design of future studies that aim to prevent and mitigate cardiovascular disease in cancer patients and survivors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA