Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nature ; 544(7650): 316-321, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28355182

RESUMO

Strengthening of synaptic connections by NMDA (N-methyl-d-aspartate) receptor-dependent long-term potentiation (LTP) shapes neural circuits and mediates learning and memory. During the induction of NMDA-receptor-dependent LTP, Ca2+ influx stimulates recruitment of synaptic AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors, thereby strengthening synapses. How Ca2+ induces the recruitment of AMPA receptors remains unclear. Here we show that, in the pyramidal neurons of the hippocampal CA1 region in mice, blocking postsynaptic expression of both synaptotagmin-1 (Syt1) and synaptotagmin-7 (Syt7), but not of either alone, abolished LTP. LTP was restored by expression of wild-type Syt7 but not of a Ca2+-binding-deficient mutant Syt7. Blocking postsynaptic expression of Syt1 and Syt7 did not impair basal synaptic transmission, reduce levels of synaptic or extrasynaptic AMPA receptors, or alter other AMPA receptor trafficking events. Moreover, expression of dominant-negative mutant Syt1 which inhibits Ca2+-dependent presynaptic vesicle exocytosis, also blocked Ca2+-dependent postsynaptic AMPA receptor exocytosis, thereby abolishing LTP. Our results suggest that postsynaptic Syt1 and Syt7 act as redundant Ca2+-sensors for Ca2+-dependent exocytosis of AMPA receptors during LTP, and thereby delineate a simple mechanism for the recruitment of AMPA receptors that mediates LTP.


Assuntos
Exocitose , Potenciação de Longa Duração/fisiologia , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Sinaptotagminas/metabolismo , Animais , Região CA1 Hipocampal/citologia , Cálcio/metabolismo , Feminino , Masculino , Camundongos , Mutação , Transporte Proteico , Células Piramidais/metabolismo , Transmissão Sináptica , Sinaptotagminas/genética
2.
Int J Mol Sci ; 22(12)2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205274

RESUMO

The fragile X syndrome (FXS) is an X-chromosome-linked neurodevelopmental disorder with severe intellectual disability caused by inactivation of the fragile X mental retardation 1 (FMR1) gene and subsequent loss of the fragile X mental retardation protein (FMRP). Among the various types of abnormal synaptic function and synaptic plasticity phenotypes reported in FXS animal models, defective synaptic retinoic acid (RA) signaling and subsequent defective homeostatic plasticity have emerged as a major synaptic dysfunction. However, the mechanism underlying the defective synaptic RA signaling in the absence of FMRP is unknown. Here, we show that RARα, the RA receptor critically involved in synaptic RA signaling, directly interacts with FMRP. This interaction is enhanced in the presence of RA. Blocking the interaction between FMRP and RARα with a small peptide corresponding to the critical binding site in RARα abolishes RA-induced increases in excitatory synaptic transmission, recapitulating the phenotype seen in the Fmr1 knockout mouse. Taken together, these data suggest that not only are functional FMRP and RARα necessary for RA-dependent homeostatic synaptic plasticity, but that the interaction between these two proteins is essential for proper transcription-independent RA signaling. Our results may provide further mechanistic understanding into FXS synaptic pathophysiology.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/metabolismo , Plasticidade Neuronal , Receptor alfa de Ácido Retinoico/metabolismo , Animais , Feminino , Homeostase , Masculino , Camundongos , Camundongos Knockout , Tretinoína/metabolismo
3.
Proc Natl Acad Sci U S A ; 112(42): E5744-52, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26443861

RESUMO

Homeostatic synaptic plasticity is a form of non-Hebbian plasticity that maintains stability of the network and fidelity for information processing in response to prolonged perturbation of network and synaptic activity. Prolonged blockade of synaptic activity decreases resting Ca(2+) levels in neurons, thereby inducing retinoic acid (RA) synthesis and RA-dependent homeostatic synaptic plasticity; however, the signal transduction pathway that links reduced Ca(2+)-levels to RA synthesis remains unknown. Here we identify the Ca(2+)-dependent protein phosphatase calcineurin (CaN) as a key regulator for RA synthesis and homeostatic synaptic plasticity. Prolonged inhibition of CaN activity promotes RA synthesis in neurons, and leads to increased excitatory and decreased inhibitory synaptic transmission. These effects of CaN inhibitors on synaptic transmission are blocked by pharmacological inhibitors of RA synthesis or acute genetic deletion of the RA receptor RARα. Thus, CaN, acting upstream of RA, plays a critical role in gating RA signaling pathway in response to synaptic activity. Moreover, activity blockade-induced homeostatic synaptic plasticity is absent in CaN knockout neurons, demonstrating the essential role of CaN in RA-dependent homeostatic synaptic plasticity. Interestingly, in GluA1 S831A and S845A knockin mice, CaN inhibitor- and RA-induced regulation of synaptic transmission is intact, suggesting that phosphorylation of GluA1 C-terminal serine residues S831 and S845 is not required for CaN inhibitor- or RA-induced homeostatic synaptic plasticity. Thus, our study uncovers an unforeseen role of CaN in postsynaptic signaling, and defines CaN as the Ca(2+)-sensing signaling molecule that mediates RA-dependent homeostatic synaptic plasticity.


Assuntos
Calcineurina/fisiologia , Homeostase , Plasticidade Neuronal/fisiologia , Tretinoína/metabolismo , Animais , Camundongos , Fosforilação , Receptores de AMPA/metabolismo , Receptores do Ácido Retinoico/fisiologia , Receptor alfa de Ácido Retinoico , Transdução de Sinais
4.
J Cell Sci ; 127(Pt 24): 5253-60, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25335889

RESUMO

Phosphoinositide 3-kinase (PI3K) and PTEN have been shown to participate in synaptic plasticity during long-term potentiation (LTP) and long-term depression (LTD), respectively. Nevertheless, the dynamics of phosphatidylinositol-(3,4,5)-trisphosphate (PIP3) and the regulation of its synthesis and degradation at synaptic compartments is far from clear. Here, we have used fluorescence resonance energy transfer (FRET) imaging to monitor changes in PIP3 levels in dendritic spines from CA1 hippocampal neurons under basal conditions and upon induction of NMDA receptor (NMDAR)-dependent LTD and LTP. We found that PIP3 undergoes constant turnover in dendritic spines. Contrary to expectations, both LTD and LTP induction trigger an increase in PIP3 synthesis, which requires NMDARs and PI3K activity. Using biochemical methods, the upregulation of PIP3 levels during LTP was estimated to be twofold. However, in the case of LTD, PTEN activity counteracts the increase in PIP3 synthesis, resulting in no net change in PIP3 levels. Therefore, both LTP and LTD signaling converge towards PIP3 upregulation, but PTEN acts as an LTD-selective switch that determines the outcome of PIP3 accumulation.


Assuntos
Espinhas Dendríticas/metabolismo , Depressão Sináptica de Longo Prazo , PTEN Fosfo-Hidrolase/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Regulação para Cima , Animais , Transferência Ressonante de Energia de Fluorescência , Potenciação de Longa Duração , PTEN Fosfo-Hidrolase/antagonistas & inibidores , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos
5.
J Neurosci ; 33(5): 2087-96, 2013 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-23365245

RESUMO

Chronic inactivation of a neural network is known to induce homeostatic upregulation of synaptic strength, a form of synaptic plasticity that differs from Hebbian-type synaptic plasticity in that it is not input-specific, but involves all synapses of an individual neuron. However, it is unclear how homeostatic and Hebbian synaptic plasticity interact in the same neuron. Here we show that long-term potentiation (LTP) at Schaffer collateral-CA1 synapses is greatly enhanced in cultured mouse hippocampal slices after chronic (60 h) network-activity blockade with tetrodotoxin (TTX). This increase in LTP is not due to an altered synaptic NMDA receptor composition or presynaptic function. Instead, we found that silencing neural network activity not only increases the abundance of both AMPA and NMDA receptors at existing synapses as previously described, but also promotes the presence of new glutamatergic synapses that contain only NMDA receptors-a class of synapses that are functionally silent due to the absence of AMPA receptors. Induction of LTP in TTX-treated neurons leads to insertion of AMPA receptors into the silent synapses, thereby "switching on" these silent synapses, which produces the observed enhancement of LTP magnitude. Our findings suggest that homeostatic synaptic plasticity manifests not only in the adjustment of the strength of existing synapses, but also in the modulation of new synapse formation/maintenance. Moreover, presence of new but functionally silent synapses enables more robust LTP to occur through rapid conversion of silent synapses to active synapses, resulting in a stronger input-specific modulation of synapses following prolonged network silencing.


Assuntos
Potenciação de Longa Duração/fisiologia , Rede Nervosa/fisiologia , Inibição Neural/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/efeitos dos fármacos , Inibição Neural/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/efeitos dos fármacos , Tetrodotoxina/farmacologia
6.
J Neurosci ; 31(37): 13224-35, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21917805

RESUMO

Voltage-gated potassium (Kv) channels are critical for neuronal excitability and are targeted to specific subcellular compartments to carry out their unique functions. While it is widely believed that Kv channels exist as heteromeric complexes in neurons, direct tests of the hypothesis that specific heteromeric channel populations display divergent spatial and temporal dynamics are limited. Using a bimolecular fluorescence complementation approach, we monitored the assembly and localization of cell surface channel complexes in living cells. While PSD95-mediated clustering was subunit independent, selective visualization of heteromeric Kv complexes in rat hippocampal neurons revealed subunit-dependent localization that was not predicted by analyzing individual subunits. Assembly of Kv1.1 with Kv1.4 prevented axonal localization but not surface expression, while inclusion of Kv1.2 imparted clustering at presynaptic sites and decreased channel mobility within the axon. This mechanism by which specific Kv channel subunits can act in a dominant manner to impose unique trafficking properties to heteromeric complexes extended to Shab-related family of Kv channels. When coexpressed, Kv2.1 and Kv2.2 heteromultimers did not aggregate in somatodendritic clusters observed with expression of Kv2.1 alone. These studies demonstrate selective axonal trafficking and surface localization of distinct Kv channels based on their subunit composition.


Assuntos
Transporte Axonal/fisiologia , Subunidades Proteicas/metabolismo , Transporte Proteico/fisiologia , Superfamília Shaker de Canais de Potássio/metabolismo , Animais , Células COS , Membrana Celular/metabolismo , Células Cultivadas , Chlorocebus aethiops , Feminino , Hipocampo/metabolismo , Hipocampo/fisiologia , Masculino , Potenciais da Membrana , Neurônios/metabolismo , Neurônios/fisiologia , Técnicas de Patch-Clamp/métodos , Ratos
7.
Elife ; 112022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36515276

RESUMO

Homeostatic synaptic plasticity is a non-Hebbian synaptic mechanism that adjusts synaptic strength to maintain network stability while achieving optimal information processing. Among the molecular mediators shown to regulate this form of plasticity, synaptic signaling through retinoic acid (RA) and its receptor, RARα, has been shown to be critically involved in the homeostatic adjustment of synaptic transmission in both hippocampus and sensory cortices. In this study, we explore the molecular mechanism through which postsynaptic RA and RARα regulates presynaptic neurotransmitter release during prolonged synaptic inactivity at mouse glutamatertic synapses. We show that RARα binds to a subset of dendritically sorted brain-derived neurotrophic factor (Bdnf) mRNA splice isoforms and represses their translation. The RA-mediated translational de-repression of postsynaptic BDNF results in the retrograde activation of presynaptic tropomyosin receptor kinase B (TrkB) receptors, facilitating presynaptic homeostatic compensation through enhanced presynaptic release. Together, our study illustrates an RA-mediated retrograde synaptic signaling pathway through which postsynaptic protein synthesis during synaptic inactivity drives compensatory changes at the presynaptic site.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Receptores do Ácido Retinoico , Camundongos , Animais , Receptores do Ácido Retinoico/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Homeostase/fisiologia , Tretinoína/metabolismo , Receptor alfa de Ácido Retinoico/metabolismo , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Dendritos/metabolismo
8.
Circ Res ; 104(12): 1390-8, 2009 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-19443837

RESUMO

Conventional antiarrhythmic drugs target the ion permeability of channels, but increasing evidence suggests that functional ion channel density can also be modified pharmacologically. Kv1.5 mediates the ultrarapid potassium current (I(Kur)) that controls atrial action potential duration. Given the atrial-specific expression of Kv1.5 and its alterations in human atrial fibrillation, significant effort has been made to identify novel channel blockers. In this study, treatment of HL-1 atrial myocytes expressing Kv1.5-GFP with the class I antiarrhythmic agent quinidine resulted in a dose- and temperature-dependent internalization of Kv1.5, concomitant with channel block. This quinidine-induced channel internalization was confirmed in acutely dissociated neonatal myocytes. Channel internalization was subunit-dependent, activity-independent, stereospecific, and blocked by pharmacological disruption of the endocytic machinery. Pore block and channel internalization partially overlap in the structural requirements for drug binding. Surprisingly, quinidine-induced endocytosis was calcium-dependent and therefore unrecognized by previous biophysical studies focused on isolating channel-drug interactions. Importantly, whereas acute quinidine-induced internalization was reversible, chronic treatment led to channel degradation. Together, these data reveal a novel mechanism of antiarrhythmic drug action and highlight the possibility for new agents that selectively modulate the stability of channel protein in the membrane as an approach for treating cardiac arrhythmias.


Assuntos
Antiarrítmicos/farmacologia , Fibrilação Atrial/metabolismo , Canal de Potássio Kv1.5/metabolismo , Proteínas Musculares/metabolismo , Miócitos Cardíacos/metabolismo , Potássio/metabolismo , Quinidina/farmacologia , Animais , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/genética , Linhagem Celular , Átrios do Coração/metabolismo , Humanos , Transporte de Íons/efeitos dos fármacos , Transporte de Íons/genética , Canal de Potássio Kv1.5/genética , Camundongos , Proteínas Musculares/genética , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética
9.
Elife ; 92020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33215988

RESUMO

Fragile X syndrome (FXS) is an X chromosome-linked disease associated with severe intellectual disabilities. Previous studies using the Fmr1 knockout (KO) mouse, an FXS mouse model, have attributed behavioral deficits to synaptic dysfunctions. However, how functional deficits at neural network level lead to abnormal behavioral learning remains unexplored. Here, we show that the efficacy of hippocampal engram reactivation is reduced in Fmr1 KO mice performing contextual fear memory recall. Experiencing an enriched environment (EE) prior to learning improved the engram reactivation efficacy and rescued memory recall in the Fmr1 KO mice. In addition, chemogenetically inhibiting EE-engaged neurons in CA1 reverses the rescue effect of EE on memory recall. Thus, our results suggest that inappropriate engram reactivation underlies cognitive deficits in FXS, and enriched environment may rescue cognitive deficits by improving network activation accuracy.


Assuntos
Medo/fisiologia , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/fisiopatologia , Memória/fisiologia , Animais , Comportamento Animal , Antagonistas de Estrogênios/farmacologia , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Neurônios/fisiologia , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacologia
11.
Sci Transl Med ; 10(452)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30068571

RESUMO

Fragile X syndrome (FXS) is an X chromosome-linked disease leading to severe intellectual disabilities. FXS is caused by inactivation of the fragile X mental retardation 1 (FMR1) gene, but how FMR1 inactivation induces FXS remains unclear. Using human neurons generated from control and FXS patient-derived induced pluripotent stem (iPS) cells or from embryonic stem cells carrying conditional FMR1 mutations, we show here that loss of FMR1 function specifically abolished homeostatic synaptic plasticity without affecting basal synaptic transmission. We demonstrated that, in human neurons, homeostatic plasticity induced by synaptic silencing was mediated by retinoic acid, which regulated both excitatory and inhibitory synaptic strength. FMR1 inactivation impaired homeostatic plasticity by blocking retinoic acid-mediated regulation of synaptic strength. Repairing the genetic mutation in the FMR1 gene in an FXS patient cell line restored fragile X mental retardation protein (FMRP) expression and fully rescued synaptic retinoic acid signaling. Thus, our study reveals a robust functional impairment caused by FMR1 mutations that might contribute to neuronal dysfunction in FXS. In addition, our results suggest that FXS patient iPS cell-derived neurons might be useful for studying the mechanisms mediating functional abnormalities in FXS.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/genética , Homeostase , Mutação/genética , Plasticidade Neuronal , Neurônios/metabolismo , Transdução de Sinais , Sinapses/metabolismo , Tretinoína/metabolismo , Alelos , Animais , Sequência de Bases , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/fisiopatologia , Homeostase/efeitos dos fármacos , Humanos , Camundongos , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Tretinoína/farmacologia , Repetições de Trinucleotídeos/genética , Regulação para Cima/efeitos dos fármacos
12.
Neuron ; 86(2): 442-56, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25843403

RESUMO

Retinoic acid (RA)-dependent homeostatic plasticity and NMDA receptor-dependent long-term potentiation (LTP), a form of Hebbian plasticity, both enhance synaptic strength by increasing the abundance of postsynaptic AMPA receptors (AMPARs). However, it is unclear whether the molecular mechanisms mediating AMPAR trafficking during homeostatic and Hebbian plasticity differ, and it is unknown how RA signaling impacts Hebbian plasticity. Here, we show that RA increases postsynaptic AMPAR abundance using an activity-dependent mechanism that requires a unique SNARE (soluble NSF-attachment protein receptor)-dependent fusion machinery different from that mediating LTP. Specifically, RA-induced AMPAR trafficking did not involve complexin, which activates SNARE complexes containing syntaxin-1 or -3, but not complexes containing syntaxin-4, whereas LTP required complexin. Moreover, RA-induced AMPAR trafficking utilized the Q-SNARE syntaxin-4, whereas LTP utilized syntaxin-3; both additionally required the Q-SNARE SNAP-47 and the R-SNARE synatobrevin-2. Finally, acute RA treatment blocked subsequent LTP expression, probably by increasing AMPAR trafficking. Thus, RA-induced homeostatic plasticity involves a novel, activity-dependent postsynaptic AMPAR-trafficking pathway mediated by a unique SNARE-dependent fusion machinery.


Assuntos
Exocitose/fisiologia , Potenciação de Longa Duração/fisiologia , Receptores de AMPA/efeitos dos fármacos , Receptores de AMPA/metabolismo , Proteínas SNARE/metabolismo , Tretinoína/farmacologia , Animais , Sinergismo Farmacológico , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Homeostase/fisiologia , Camundongos , Plasticidade Neuronal/fisiologia , Técnicas de Cultura de Órgãos , Transporte Proteico/fisiologia , Proteínas Qa-SNARE/metabolismo , Sinapses/metabolismo , Potenciais Sinápticos/fisiologia
13.
Nat Neurosci ; 13(1): 36-44, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20010819

RESUMO

Despite their low abundance, phosphoinositides are critical regulators of intracellular signaling and membrane compartmentalization. However, little is known of phosphoinositide function at the postsynaptic membrane. Here we show that continuous synthesis and availability of phosphatidylinositol-(3,4,5)-trisphosphate (PIP(3)) at the postsynaptic terminal is necessary for sustaining synaptic function in rat hippocampal neurons. This requirement was specific for synaptic, but not extrasynaptic, AMPA receptors, nor for NMDA receptors. PIP(3) downregulation impaired PSD-95 accumulation in spines. Concomitantly, AMPA receptors became more mobile and migrated from the postsynaptic density toward the perisynaptic membrane within the spine, leading to synaptic depression. Notably, these effects were only revealed after prolonged inhibition of PIP(3) synthesis or by direct quenching of this phosphoinositide at the postsynaptic cell. Therefore, we conclude that a slow, but constant, turnover of PIP(3) at synapses is required for maintaining AMPA receptor clustering and synaptic strength under basal conditions.


Assuntos
Fosfatos de Fosfatidilinositol/metabolismo , Células Piramidais/citologia , Receptores de AMPA/metabolismo , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Animais , Animais Recém-Nascidos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteínas de Transporte/genética , Dendritos/metabolismo , Dendritos/ultraestrutura , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/ultraestrutura , Proteína 4 Homóloga a Disks-Large , Inibidores Enzimáticos/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Proteínas de Fluorescência Verde/genética , Hipocampo/citologia , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Proteínas de Membrana/metabolismo , Microscopia Imunoeletrônica/métodos , Mutagênese Sítio-Dirigida/métodos , Proteínas do Tecido Nervoso/genética , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp/métodos , Fosfatidilinositol 3-Quinases/fisiologia , Fosfatidilinositóis/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Terminações Pré-Sinápticas/fisiologia , Terminações Pré-Sinápticas/ultraestrutura , Ligação Proteica , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Células Piramidais/ultraestrutura , Ratos , Receptores de AMPA/genética , Sinapses/efeitos dos fármacos , Sinapses/ultraestrutura , Transmissão Sináptica/efeitos dos fármacos , Fatores de Tempo , Transfecção/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA