Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 120(10): 2890-2906, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37376851

RESUMO

Eukaryotic cell-free protein synthesis (CFPS) can accelerate expression and high-throughput analysis of complex proteins with functionally relevant post-translational modifications (PTMs). However, low yields and difficulties scaling such systems have prevented their widespread adoption in protein research and manufacturing. Here, we provide detailed demonstrations for the capabilities of a CFPS system derived from Nicotiana tabacum BY-2 cell culture (BY-2 lysate; BYL). BYL is able to express diverse, functional proteins at high yields in 48 h, complete with native disulfide bonds and N-glycosylation. An optimized version of the technology is commercialized as ALiCE® and advances in scaling of BYL production methodologies now allow scaling of eukaryotic CFPS reactions. We show linear, lossless scale-up of batch mode protein expression from 100 µL microtiter plates to 10 and 100 mL volumes in Erlenmeyer flasks, culminating in preliminary data from a litre-scale reaction in a rocking-type bioreactor. Together, scaling across a 20,000x range is achieved without impacting product yields. Production of multimeric virus-like particles from the BYL cytosolic fraction were then shown, followed by functional expression of multiple classes of complex, difficult-to-express proteins using the native microsomes of the BYL CFPS. Specifically: a dimeric enzyme; a monoclonal antibody; the SARS-CoV-2 receptor-binding domain; a human growth factor; and a G protein-coupled receptor membrane protein. Functional binding and activity are demonstrated, together with in-depth PTM characterization of purified proteins through disulfide bond and N-glycan analysis. Taken together, BYL is a promising end-to-end R&D to manufacturing platform with the potential to significantly reduce the time-to-market for high value proteins and biologics.


Assuntos
Biotecnologia , COVID-19 , Humanos , Biotecnologia/métodos , Nicotiana/metabolismo , COVID-19/metabolismo , SARS-CoV-2/metabolismo , Biossíntese de Proteínas , Anticorpos Monoclonais/metabolismo , Dissulfetos/metabolismo , Sistema Livre de Células/metabolismo
2.
Biotechnol J ; 11(4): 507-18, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26632519

RESUMO

The production of biopharmaceutical proteins in plants requires efficient downstream processing steps that remove impurities such as host cell proteins (HCPs) and adventitious endotoxins produced by bacteria during transient expression. We therefore strived to develop effective routines for endotoxin removal from plant extracts and the subsequent use of the extracts to generate antibodies detecting a broad set of HCPs. At first, we depleted the superabundant protein ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) for which PEG precipitation achieved the best results, preventing a dominant immune reaction against this protein. We found that a mixture of sera from rabbits immunized with pre-depleted or post-depleted extracts detected more HCPs than the individual sera used alone. We also developed a powerful endotoxin removal procedure using Polymyxin B for extracts from wild type plants or a combination of fiber-flow filtration and EndoTrap Blue for tobacco plants infiltrated with Agrobacterium tumefaciens. The antibodies we generated will be useful for quality and performance assessment in future process development and the methods we present can easily be transferred to other expression systems rendering them useful in the field of plant molecular farming.


Assuntos
Anticorpos Monoclonais/metabolismo , Nicotiana/genética , Extratos Vegetais/imunologia , Polimixina B/isolamento & purificação , Ribulose-Bifosfato Carboxilase/deficiência , Agrobacterium tumefaciens/metabolismo , Animais , Especificidade de Anticorpos , Endotoxinas , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/microbiologia , Coelhos , Nicotiana/imunologia , Nicotiana/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA