Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Nature ; 630(8015): 102-108, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38778105

RESUMO

Metal-organic frameworks (MOFs) are useful synthetic materials that are built by the programmed assembly of metal nodes and organic linkers1. The success of MOFs results from the isoreticular principle2, which allows families of structurally analogous frameworks to be built in a predictable way. This relies on directional coordinate covalent bonding to define the framework geometry. However, isoreticular strategies do not translate to other common crystalline solids, such as organic salts3-5, in which the intermolecular ionic bonding is less directional. Here we show that chemical knowledge can be combined with computational crystal-structure prediction6 (CSP) to design porous organic ammonium halide salts that contain no metals. The nodes in these salt frameworks are tightly packed ionic clusters that direct the materials to crystallize in specific ways, as demonstrated by the presence of well-defined spikes of low-energy, low-density isoreticular structures on the predicted lattice energy landscapes7,8. These energy landscapes allow us to select combinations of cations and anions that will form thermodynamically stable, porous salt frameworks with channel sizes, functionalities and geometries that can be predicted a priori. Some of these porous salts adsorb molecular guests such as iodine in quantities that exceed those of most MOFs, and this could be useful for applications such as radio-iodine capture9-12. More generally, the synthesis of these salts is scalable, involving simple acid-base neutralization, and the strategy makes it possible to create a family of non-metal organic frameworks that combine high ionic charge density with permanent porosity.

2.
J Am Chem Soc ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953583

RESUMO

Van der Waals (vdW) magnets both allow exploration of fundamental 2D physics and offer a route toward exploiting magnetism in next generation information technology, but vdW magnets with complex, noncollinear spin textures are currently rare. We report here the syntheses, crystal structures, magnetic properties and magnetic ground states of four bulk vdW metal-organic magnets (MOMs): FeCl2(pym), FeCl2(btd), NiCl2(pym), and NiCl2(btd), pym = pyrimidine and btd = 2,1,3-benzothiadiazole. Using a combination of neutron diffraction and bulk magnetometry we show that these materials are noncollinear magnets. Although only NiCl2(btd) has a ferromagnetic ground state, we demonstrate that low-field hysteretic metamagnetic transitions produce states with net magnetization in zero-field and high coercivities for FeCl2(pym) and NiCl2(pym). By combining our bulk magnetic data with diffuse scattering analysis and broken-symmetry density-functional calculations, we probe the magnetic superexchange interactions, which when combined with symmetry analysis allow us to suggest design principles for future noncollinear vdW MOMs. These materials, if delaminated, would prove an interesting new family of 2D magnets.

3.
Bioorg Med Chem ; 101: 117636, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38354458

RESUMO

Functionalised tetrahydropyran and spirooxepane scaffolds were prepared utilising an iodoetherification strategy and elaborated to demonstrate their potential use in library synthesis. The iodoetherification products could be readily transformed to the corresponding azides that could be further functionalised via copper-catalysed azide-alkyne cycloaddition or reduction to the amine. The lead-likeness and three-dimensionality of the scaffolds were examined and compared to commercial libraries.


Assuntos
Azidas , Descoberta de Drogas , Reação de Cicloadição , Ciclização , Cobre , Alcinos , Catálise
4.
Angew Chem Int Ed Engl ; : e202410954, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900650

RESUMO

The 2,2-difluoroethyl group is an important lipophilic hydrogen bond donor in medicinal chemistry, but its incorporation into small molecules is often challenging. Herein, we demonstrate electrophilic 2,2-difluoroethylation of thiol, amine and alcohol nucleophiles with a hypervalent iodine reagent, (2,2-difluoro-ethyl)(aryl)iodonium triflate, via a proposed ligand coupling mechanism. This transformation offers a complementary strategy to existing 2,2-difluoroethylation methods and allows access to a wide range of 2,2-difluoroethylated nucleophiles, including the drugs Captopril, Normorphine and Mefloquine.

5.
J Am Chem Soc ; 145(3): 1783-1792, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36626185

RESUMO

Metal-organic magnets (MOMs), modular magnetic materials where metal atoms are connected by organic linkers, are promising candidates for next-generation quantum technologies. MOMs readily form low-dimensional structures and so are ideal systems to realize physical examples of key quantum models, including the Haldane phase, where a topological excitation gap occurs in integer-spin antiferromagnetic (AFM) chains. Thus, far the Haldane phase has only been identified for S = 1, with S ≥ 2 still unrealized because the larger spin imposes more stringent requirements on the magnetic interactions. Here, we report the structure and magnetic properties of CrCl2(pym) (pym = pyrimidine), a new quasi-1D S = 2 AFM MOM. We show, using X-ray and neutron diffraction, bulk property measurements, density-functional theory calculations, and inelastic neutron spectroscopy (INS), that CrCl2(pym) consists of AFM CrCl2 spin chains (J1 = -1.13(4) meV) which are weakly ferromagnetically coupled through bridging pym (J2 = 0.10(2) meV), with easy-axis anisotropy (D = -0.15(3) meV). We find that, although small compared to J1, these additional interactions are sufficient to prevent observation of the Haldane phase in this material. Nevertheless, the proximity to the Haldane phase together with the modularity of MOMs suggests that layered Cr(II) MOMs are a promising family to search for the elusive S = 2 Haldane phase.

6.
J Am Chem Soc ; 145(30): 16365-16373, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37478562

RESUMO

Bridged or caged polycyclic hydrocarbons have rigid structures that project substituents into precise regions of 3D space, making them attractive as linking groups in materials science and as building blocks for medicinal chemistry. The efficient synthesis of new or underexplored classes of such compounds is, therefore, an important objective. Herein, we describe the silver(I)-catalyzed rearrangement of 1,4-disubstituted cubanes to cuneanes, which are strained hydrocarbons that have not received much attention since they were first described in 1970. The synthesis of 2,6-disubstituted or 1,3-disubstituted cuneanes can be achieved with high regioselectivities, with the regioselectivity being dependent on the electronic character of the cubane substituents. A preliminary assessment of cuneanes as scaffolds for medicinal chemistry suggests cuneanes could serve as isosteric replacements of trans-1,4-disubstituted cyclohexanes and 1,3-disubstituted benzenes. An analogue of the anticancer drug sonidegib was synthesized, in which the 1,2,3-trisubstituted benzene was replaced with a 1,3-disubstituted cuneane.

7.
Chemistry ; 29(47): e202300922, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37278542

RESUMO

A photoredox-mediated radical amidation ring-expansion sequence that enables the generation of all-carbon quaternary centers bearing a protected aminomethyl substituent is described. The methodology can be applied to both styrene and unactivated alkene substrates generating structurally diverse sp3 -rich amine derivatives in a concise manner.

8.
Inorg Chem ; 62(8): 3585-3591, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36763348

RESUMO

Organofunctionalization of polyoxometalates (POMs) allows the preparation of hybrid molecular systems with tunable electronic properties. Currently, there are only a handful of approaches that allow for the fine-tuning of POM frontier molecular orbitals in a predictable manner. Herein, we demonstrate a new functionalization method for the Wells-Dawson polyoxotungstate [P2W18O62]6- using arylarsonic acids which enables modulation of the redox and photochemical properties. Arylarsonic groups facilitate orbital mixing between the organic and inorganic moieties, and the nature of the organic substituents significantly impacts the redox potentials of the POM core. The photochemical response of the hybrid POMs correlates with their computed and experimentally estimated lowest unoccupied molecular orbital energies, and the arylarsonic hybrids are found to exhibit increased visible light photosensitivity comparable with that of arylphosphonic analogues. Arylarsonic hybridization offers a route to stable and tunable organic-inorganic hybrid systems for a range of redox and photochemical applications.

9.
Angew Chem Int Ed Engl ; 62(23): e202302446, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-36988545

RESUMO

Herein, we report the synthesis and characterization of a new class of hybrid Wells-Dawson polyoxometalate (POM) containing a diphosphoryl group (P2 O6 X) of the general formula [P2 W17 O57 (P2 O6 X)]6- (X=O, NH, or CR1 R2 ). Modifying the bridging unit X was found to impact the redox potentials of the POM. The ease with which a range of α-functionalized diphosphonic acids (X=CR1 R2 ) can be prepared provides possibilities to access diverse functionalized hybrid POMs. Compared to existing phosphonate hybrid Wells-Dawson POMs, diphosphoryl-substituted POMs offer a wider tunable redox window and enhanced hydrolytic stability. This study provides a basis for the rational design and synthesis of next-generation hybrid Wells-Dawson POMs.

10.
Chemistry ; 28(50): e202201478, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-35661287

RESUMO

The synthesis of new morphinan opioids by the addition of photochemically generated carbon-centered radicals to substrates containing an enone in the morphinan C-ring, is described. Using tetrabutylammonium decatungstate (TBADT) as a hydrogen atom transfer photocatalyst, diverse radical donors can be used to prepare a variety of C8-functionalized morphinan opioids. This work demonstrates the late-stage modification of complex, highly functionalized substrates.


Assuntos
Carbono , Morfinanos , Analgésicos Opioides , Catálise , Compostos de Amônio Quaternário
11.
Chemistry ; 28(52): e202201188, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-35762497

RESUMO

Single crystals of 2D coordination network {Cu2 L2 ⋅ (DMF)3 (H2 O)3 }n (1-DMF) were prepared by reaction of commercial reagents 3-formyl-4-hydroxybenzoic acid (H2 L) and Cu(NO3 )2 in dimethylformamide (DMF). The single-crystal structure shows two distinct Cu(II) coordination environments arising from the separate coordination of Cu(II) cations to the carboxylate and salicylaldehydato moieties on the linker, with 1D channels running through the structure. Flexibility is exhibited on solvent exchange with ethanol and tetrahydrofuran, while porosity and the unique overall connectivity of the structure are retained. The activated material exhibits type I gas sorption behaviour and a BET surface area of 950 m2 g-1 (N2 , 77 K). Notably, the framework adsorbs negligible quantities of CH4 compared with CO2 and the C2 Hn hydrocarbons. It exhibits exceptional selectivity for C2 H2 /CH4 and C2 H2 /C2 Hn , which has applicability in separation technologies for the isolation of C2 H2 .

12.
Angew Chem Int Ed Engl ; 61(22): e202202305, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35239987

RESUMO

Gold(I)-catalyzed nucleophilic allylations of pyridinium and quinolinium ions with various allyl pinacolboronates are reported. The reactions are completely selective with respect to the site of the azinium ion that is attacked, to give various functionalized 1,4-dihydropyridines and 1,4-dihydroquinolines. Evidence suggests that the reactions proceed through nucleophilic allylgold(I) intermediates formed by transmetalation from allylboronates. Density functional theory (DFT) calculations provided mechanistic insight.

13.
Angew Chem Int Ed Engl ; 61(40): e202210840, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35950691

RESUMO

The α-arylation of cyclic and fluoroalkyl 1,3-diketones is made challenging by the highly stabilized nature of the corresponding enolates, and is especially difficult for sterically demanding aryl partners. As a general solution to this problem, we report the Bi-mediated oxidative coupling of acidic diones and ortho-substituted arylboronic acids. Starting from a bench-stable bismacycle precursor, a sequence of B-to-Bi transmetallation, oxidation and C-C bond formation furnishes the arylated diones. Development of methodology that tolerates both sensitive functionality and steric demand is supported by interrogation of key reactive intermediates. Application of our strategy to cyclic diones enables the concise synthesis of important agrochemical intermediates which were previously prepared using toxic Pb reagents. This methodology also enables the first ever arylation of fluoroalkyl diones which, upon condensation with hydrazine, provides direct access to valuable fluoroalkyl pyrazoles.

14.
J Am Chem Soc ; 143(17): 6586-6592, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33885294

RESUMO

We report the reversible adsorption of ammonia (NH3) up to 9.9 mmol g-1 in a robust Al-based metal-organic framework, MFM-303(Al), which is functionalized with free carboxylic acid and hydroxyl groups. The unique pore environment decorated with these acidic sites results in an exceptional packing density of NH3 at 293 K (0.801 g cm-3) comparable to that of solid NH3 at 193 K (0.817 g cm-3). In situ synchrotron X-ray diffraction and inelastic neutron scattering reveal the critical role of free -COOH and -OH groups in immobilizing NH3 molecules. Breakthrough experiments confirm the excellent performance of MFM-303(Al) for the capture of NH3 at low concentrations under both dry and wet conditions.

15.
J Am Chem Soc ; 143(9): 3348-3358, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33625838

RESUMO

The desolvated (3,24)-connected metal-organic framework (MOF) material, MFM-160a, [Cu3(L)(H2O)3] [H6L = 1,3,5-triazine-2,4,6-tris(aminophenyl-4-isophthalic acid)], exhibits excellent high-pressure uptake of CO2 (110 wt% at 20 bar, 298 K) and highly selective separation of C2 hydrocarbons from CH4 at 1 bar pressure. Henry's law selectivities of 79:1 for C2H2:CH4 and 70:1 for C2H4:CH4 at 298 K are observed, consistent with ideal adsorption solution theory (IAST) predictions. Significantly, MFM-160a shows a selectivity of 16:1 for C2H2:CO2. Solid-state 2H NMR spectroscopic studies on partially deuterated MFM-160-d12 confirm an ultra-low barrier (∼2 kJ mol-1) to rotation of the phenyl group in the activated MOF and a rotation rate 5 orders of magnitude slower than usually observed for solid-state materials (1.4 × 106 Hz cf. 1011-1013 Hz). Upon introduction of CO2 or C2H2 into desolvated MFM-160a, this rate of rotation was found to increase with increasing gas pressure, a phenomenon attributed to the weakening of an intramolecular hydrogen bond in the triazine-containing linker upon gas binding. DFT calculations of binding energies and interactions of CO2 and C2H2 around the triazine core are entirely consistent with the 2H NMR spectroscopic observations.

16.
Chemistry ; 27(19): 5897-5900, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33533065

RESUMO

Domino reactions involving nickel-catalyzed additions of (hetero)arylboronic acids to alkynes, followed by cyclization of the alkenylnickel intermediates onto tethered acyclic ketones to give chiral tertiary-alcohol-containing products in high enantioselectivities, are described. The reversible E/Z isomerization of the alkenylnickel intermediates enables overall anti-arylmetallative cyclization to occur. The ring system of the products are substructures of certain diarylindolizidine alkaloids.

17.
Inorg Chem ; 60(14): 10114-10123, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34197113

RESUMO

A series of group 11 m-terphenyl complexes have been synthesized via a metathesis reaction from the iron(II) complexes (2,6-Mes2C6H3)2Fe and (2,6-Xyl2C6H3)2Fe (Mes = 2,4,6-Me3C6H2; Xyl = 2,6-Me2C6H3). [2,6-Mes2C6H3M]2 (1, M = Cu; 2, M = Ag; 6, M = Au) and [2,6-Xyl2C6H3M]2 (3, M = Cu; 4, M = Ag) are dimeric in the solid state, although different geometries are observed depending on the ligand. These complexes feature short metal-metal distances in the expected range for metallophilic interactions. While 1-4 are readily isolated using this metathetical route, the gold complex 6 is unstable in solution at ambient temperatures and has only been obtained in low yield from the decomposition of (2,6-Mes2C6H3)Au·SMe2 (5). NMR spectroscopic measurements, including diffusion-ordered spectroscopy, suggest that 1-4 remain dimeric in a benzene-d6 solution. The metal-metal interactions have been examined computationally using the Quantum Theory of Atoms in Molecules and by an energy decomposition analysis employing natural orbitals for chemical valence.

18.
J Fluoresc ; 31(4): 1177-1190, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34032972

RESUMO

A luminescent Cobalt(II) co-crystal [Co13(PDC)16(H2O)24.7H2O] 1 (where H2PDC = 2,6-pyridinedicarboxylic acid) have been prepared by oven-heating and slow evaporation of solvent. Single crystal X-ray diffraction (SCXRD) analysis revealed that 1 is a mixture of complexes that crystallizes in the triclinic space group P-1 and the geometry around the Co(II) ions is octahedral. The structure is extensively imbued with hydrogen bonding that helps in stabilizing the complex. Thermogravimetric analysis indicates that 1 is thermally stable up to 364 οC. The luminescence properties of 1 revealed a strong emission centered at 437 nm (λex = 345 nm) assigned to ligand to metal charge transfer (LMCT). The luminescence sensing of 1 towards volatile organic molecules were also examined. However, 1 displayed a turn off towards methanol compared to other molecules with high quenching efficiency and low limit of detection (3.5 × 10-4 vol%). The results show excellent selectively and high sensitivity. Powder X-ray diffraction studies revealed that the structural integrity of the complex was maintained after exposure to methanol vapour. Theoretical studies also revealed small binding energy (-413.2 au) and low energy gap (1.19) for 1-CH3OH adduct.

19.
Nat Mater ; 18(12): 1358-1365, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31611671

RESUMO

Emissions of SO2 from flue gas and marine transport have detrimental impacts on the environment and human health, but SO2 is also an important industrial feedstock if it can be recovered, stored and transported efficiently. Here we report the exceptional adsorption and separation of SO2 in a porous material, [Cu2(L)] (H4L = 4',4‴-(pyridine-3,5-diyl)bis([1,1'-biphenyl]-3,5-dicarboxylic acid)), MFM-170. MFM-170 exhibits fully reversible SO2 uptake of 17.5 mmol g-1 at 298 K and 1.0 bar, and the SO2 binding domains for trapped molecules within MFM-170 have been determined. We report the reversible coordination of SO2 to open Cu(II) sites, which contributes to excellent adsorption thermodynamics and selectivities for SO2 binding and facile regeneration of MFM-170 after desorption. MFM-170 is stable to water, acid and base and shows great promise for the dynamic separation of SO2 from simulated flue gas mixtures, as confirmed by breakthrough experiments.

20.
Chemistry ; 26(17): 3729-3732, 2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32022300

RESUMO

An ω-transaminase-triggered intramolecular aza-Michael reaction has been employed for the preparation of cyclic ß-enaminones in good yield and excellent enantio- and diastereoselectivity, starting from easily accessible prochiral ketoynones and commercially available enzymes. The powerful thermodynamic driving force associated with the spontaneous aza-Michael reaction effectively displaces the transaminase reaction equilibrium towards product formation, using only two equivalents of isopropylamine. To demonstrate the potential of this methodology, this biocatalytic aza-Michael step was combined with annulation chemistry, affording unique stereo-defined fused alkaloid architectures.


Assuntos
Alcaloides/química , Transaminases , Biocatálise , Estrutura Molecular , Transaminases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA