Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell ; 163(7): 1716-29, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26686653

RESUMO

Cellular lipid requirements are achieved through a combination of biosynthesis and import programs. Using isotope tracer analysis, we show that type I interferon (IFN) signaling shifts the balance of these programs by decreasing synthesis and increasing import of cholesterol and long chain fatty acids. Genetically enforcing this metabolic shift in macrophages is sufficient to render mice resistant to viral challenge, demonstrating the importance of reprogramming the balance of these two metabolic pathways in vivo. Unexpectedly, mechanistic studies reveal that limiting flux through the cholesterol biosynthetic pathway spontaneously engages a type I IFN response in a STING-dependent manner. The upregulation of type I IFNs was traced to a decrease in the pool size of synthesized cholesterol and could be inhibited by replenishing cells with free cholesterol. Taken together, these studies delineate a metabolic-inflammatory circuit that links perturbations in cholesterol biosynthesis with activation of innate immunity.


Assuntos
Colesterol/metabolismo , Imunidade Inata , Interferon gama/metabolismo , Transdução de Sinais , Animais , Linhagem Celular Tumoral , Humanos , Interferon beta-1b , Proteínas de Membrana/metabolismo , Ácido Mevalônico/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo
2.
Nat Immunol ; 14(5): 489-99, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23563690

RESUMO

Newly activated CD8(+) T cells reprogram their metabolism to meet the extraordinary biosynthetic demands of clonal expansion; however, the signals that mediate metabolic reprogramming remain poorly defined. Here we demonstrate an essential role for sterol regulatory element-binding proteins (SREBPs) in the acquisition of effector-cell metabolism. Without SREBP signaling, CD8(+) T cells were unable to blast, which resulted in attenuated clonal expansion during viral infection. Mechanistic studies indicated that SREBPs were essential for meeting the heightened lipid requirements of membrane synthesis during blastogenesis. SREBPs were dispensable for homeostatic proliferation, which indicated a context-specific requirement for SREBPs in effector responses. Our studies provide insights into the molecular signals that underlie the metabolic reprogramming of CD8(+) T cells during the transition from quiescence to activation.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Imunidade Adaptativa/genética , Animais , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/genética , Proliferação de Células , Células Cultivadas , Ativação Linfocitária/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , RNA Interferente Pequeno/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Transgenes/genética
3.
J Lipid Res ; 58(2): 460-468, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27974366

RESUMO

Stable isotope labeling has become an important methodology for determining lipid metabolic parameters of normal and neoplastic cells. Conventional methods for fatty acid and cholesterol analysis have one or more issues that limit their utility for in vitro stable isotope-labeling studies. To address this, we developed a method optimized for measuring both fatty acids and cholesterol from small numbers of stable isotope-labeled cultured cells. We demonstrate quantitative derivatization and extraction of fatty acids from a wide range of lipid classes using this approach. Importantly, cholesterol is also recovered, albeit at a modestly lower yield, affording the opportunity to quantitate both cholesterol and fatty acids from the same sample. Although we find that background contamination can interfere with quantitation of certain fatty acids in low amounts of starting material, our data indicate that this optimized method can be used to accurately measure mass isotopomer distributions for cholesterol and many fatty acids isolated from small numbers of cultured cells. Application of this method will facilitate acquisition of lipid parameters required for quantifying flux and provide a better understanding of how lipid metabolism influences cellular function.


Assuntos
Colesterol/isolamento & purificação , Ácidos Graxos/isolamento & purificação , Marcação por Isótopo/métodos , Metabolismo dos Lipídeos , Linhagem Celular , Colesterol/metabolismo , Ácidos Graxos/metabolismo , Humanos , Isótopos/farmacologia
4.
Cell Rep ; 25(10): 2919-2934.e8, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30517876

RESUMO

It is well understood that fatty acids can be synthesized, imported, and modified to meet requisite demands in cells. However, following the movement of fatty acids through the multiplicity of these metabolic steps has remained difficult. To better address this problem, we developed Fatty Acid Source Analysis (FASA), a model that defines the contribution of synthesis, import, and elongation pathways to fatty acid homeostasis in saturated, monounsaturated, and polyunsaturated fatty acid pools. Application of FASA demonstrated that elongation can be a major contributor to cellular fatty acid content and showed that distinct pro-inflammatory stimuli (e.g., Toll-like receptors 2, 3, or 4) specifically reprogram homeostasis of fatty acids by differential utilization of synthetic and elongation pathways in macrophages. In sum, this modeling approach significantly advances our ability to interrogate cellular fatty acid metabolism and provides insight into how cells dynamically reshape their lipidomes in response to metabolic or inflammatory signals.


Assuntos
Ácidos Graxos/metabolismo , Marcação por Isótopo/métodos , Modelos Biológicos , Animais , Carbono/metabolismo , Linhagem Celular , Ácidos Graxos Insaturados/metabolismo , Homeostase , Humanos , Inflamação/patologia , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL
5.
Lab Chip ; 17(10): 1802-1816, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28443841

RESUMO

Short-lived radiolabeled tracers for positron emission tomography (PET) must be rapidly synthesized, purified, and formulated into injectable solution just prior to imaging. Current radiosynthesizers are generally designed for clinical use, and the HPLC purification and SPE formulation processes often result in a final volume that is too large for preclinical and emerging in vitro applications. Conventional technologies and techniques for reducing this volume tend to be slow, resulting in radioactive decay of the product, and often require manual handling of the radioactive materials. We present a fully-automated microfluidic system based on sweeping gas membrane distillation to rapidly perform the concentration and formulation process. After detailed characterization of the system, we demonstrate fast and efficient concentration and formulation of several PET tracers, evaluate residual solvent content to establish the safety of the formulated tracers for injection, and show that the formulated tracer can be used for in vivo imaging.


Assuntos
Destilação/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Compostos Radiofarmacêuticos/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Desenho de Equipamento , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/análise , Compostos Radiofarmacêuticos/química
6.
PLoS One ; 10(6): e0129776, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26075887

RESUMO

PICALM (Phosphatidyl Inositol Clathrin Assembly Lymphoid Myeloid protein) is a ubiquitously expressed protein that plays a role in clathrin-mediated endocytosis. PICALM also affects the internalization and trafficking of SNAREs and modulates macroautophagy. Chromosomal translocations that result in the fusion of PICALM to heterologous proteins cause leukemias, and genome-wide association studies have linked PICALM Single Nucleotide Polymorphisms (SNPs) to Alzheimer's disease. To obtain insight into the biological role of PICALM, we performed gene expression studies of PICALM-deficient and PICALM-expressing cells. Pathway analysis demonstrated that PICALM expression influences the expression of genes that encode proteins involved in cholesterol biosynthesis and lipoprotein uptake. Gas Chromatography-Mass Spectrometry (GC-MS) studies indicated that loss of PICALM increases cellular cholesterol pool size. Isotopic labeling studies revealed that loss of PICALM alters increased net scavenging of cholesterol. Flow cytometry analyses confirmed that internalization of the LDL receptor is enhanced in PICALM-deficient cells as a result of higher levels of LDLR expression. These findings suggest that PICALM is required for cellular cholesterol homeostasis and point to a novel mechanism by which PICALM alterations may contribute to disease.


Assuntos
Colesterol/metabolismo , Homeostase , Proteínas Monoméricas de Montagem de Clatrina/metabolismo , Animais , Vias Biossintéticas/genética , Linhagem Celular , Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Camundongos , Proteínas Monoméricas de Montagem de Clatrina/genética , Especificidade de Órgãos , Transporte Proteico , Interferência de RNA , RNA Interferente Pequeno/genética , Receptores de LDL/metabolismo
7.
Cancer Res ; 73(9): 2850-62, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23440422

RESUMO

The sterol regulatory element-binding proteins (SREBP) are key transcriptional regulators of lipid metabolism and cellular growth. It has been proposed that SREBP signaling regulates cellular growth through its ability to drive lipid biosynthesis. Unexpectedly, we find that loss of SREBP activity inhibits cancer cell growth and viability by uncoupling fatty acid synthesis from desaturation. Integrated lipid profiling and metabolic flux analysis revealed that cancer cells with attenuated SREBP activity maintain long-chain saturated fatty acid synthesis, while losing fatty acid desaturation capacity. We traced this defect to the uncoupling of fatty acid synthase activity from stearoyl-CoA desaturase 1 (SCD1)-mediated desaturation. This deficiency in desaturation drives an imbalance between the saturated and monounsaturated fatty acid pools resulting in severe lipotoxicity. Importantly, replenishing the monounsaturated fatty acid pool restored growth to SREBP-inhibited cells. These studies highlight the importance of fatty acid desaturation in cancer growth and provide a novel mechanistic explanation for the role of SREBPs in cancer metabolism.


Assuntos
Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias/metabolismo , Animais , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Ácido Graxo Sintases/metabolismo , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos NOD , Modelos Estatísticos , Transplante de Neoplasias , Transdução de Sinais , Estearoil-CoA Dessaturase/metabolismo , Esteróis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA