Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Dev Dyn ; 250(11): 1568-1583, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33848015

RESUMO

BACKGROUND: Nephron progenitor cells (NPCs) undergo a stepwise process to generate all mature nephron structures. Mesenchymal to epithelial transition (MET) is considered a multistep process of NPC differentiation to ensure progressive establishment of new nephrons. However, despite this important role, to date, no marker for NPCs undergoing MET in the nephron exists. RESULTS: Here, we identify LGR6 as a NPC marker, expressed in very early cap mesenchyme, pre-tubular aggregates, renal vesicles, and in segments of S-shaped bodies, following the trajectory of MET. By using a lineage tracing approach in embryonic explants in combination with confocal imaging and single-cell RNA sequencing, we provide evidence for the multiple fates of LGR6+ cells during embryonic nephrogenesis. Moreover, by using long-term in vivo lineage tracing, we show that postnatal LGR6+ cells are capable of generating the multiple lineages of the nephrons. CONCLUSIONS: Given the profound early mesenchymal expression and MET signature of LGR6+ cells, together with the lineage tracing of mesenchymal LGR6+ cells, we conclude that LGR6+ cells contribute to all nephrogenic segments by undergoing MET. LGR6+ cells can therefore be considered an early committed NPC population during embryonic and postnatal nephrogenesis with potential regenerative capability.


Assuntos
Néfrons , Células-Tronco , Diferenciação Celular , Mesoderma , Organogênese/genética
2.
Nat Biotechnol ; 41(1): 60-69, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35879361

RESUMO

Extending the success of cellular immunotherapies against blood cancers to the realm of solid tumors will require improved in vitro models that reveal therapeutic modes of action at the molecular level. Here we describe a system, called BEHAV3D, developed to study the dynamic interactions of immune cells and patient cancer organoids by means of imaging and transcriptomics. We apply BEHAV3D to live-track >150,000 engineered T cells cultured with patient-derived, solid-tumor organoids, identifying a 'super engager' behavioral cluster comprising T cells with potent serial killing capacity. Among other T cell concepts we also study cancer metabolome-sensing engineered T cells (TEGs) and detect behavior-specific gene signatures that include a group of 27 genes with no previously described T cell function that are expressed by super engager killer TEGs. We further show that type I interferon can prime resistant organoids for TEG-mediated killing. BEHAV3D is a promising tool for the characterization of behavioral-phenotypic heterogeneity of cellular immunotherapies and may support the optimization of personalized solid-tumor-targeting cell therapies.


Assuntos
Neoplasias , Linfócitos T , Humanos , Neoplasias/genética , Neoplasias/terapia , Imunoterapia/métodos , Organoides/patologia
3.
Nat Protoc ; 17(12): 3028-3055, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36180532

RESUMO

Revealing the 3D composition of intact tissue specimens is essential for understanding cell and organ biology in health and disease. State-of-the-art 3D microscopy techniques aim to capture tissue volumes on an ever-increasing scale, while also retaining sufficient resolution for single-cell analysis. Furthermore, spatial profiling through multi-marker imaging is fast developing, providing more context and better distinction between cell types. Following these lines of technological advance, we here present a protocol based on FUnGI (fructose, urea and glycerol clearing solution for imaging) optical clearing of tissue before multispectral large-scale single-cell resolution 3D (mLSR-3D) imaging, which implements 'on-the-fly' linear unmixing of up to eight fluorophores during a single acquisition. Our protocol removes the need for repetitive illumination, thereby allowing larger volumes to be scanned with better image quality in less time, also reducing photo-bleaching and file size. To aid in the design of multiplex antibody panels, we provide a fast and manageable intensity equalization assay with automated analysis to design a combination of markers with balanced intensities suitable for mLSR-3D. We demonstrate effective mLSR-3D imaging of various tissues, including patient-derived organoids and xenografted tumors, and, furthermore, describe an optimized workflow for mLSR-3D imaging of formalin-fixed paraffin-embedded samples. Finally, we provide essential steps for 3D image data processing, including shading correction that does not require pre-acquired shading references and 3D inhomogeneity correction to correct fluorescence artefacts often afflicting 3D datasets. Together, this provides a one-week protocol for eight-fluorescent-marker 3D visualization and exploration of intact tissue of various origins at single-cell resolution.


Assuntos
Imageamento Tridimensional , Organoides , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Microscopia Confocal/métodos
4.
J Vis Exp ; (160)2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32568249

RESUMO

Organoid technology, in vitro 3D culturing of miniature tissue, has opened a new experimental window for cellular processes that govern organ development and function as well as disease. Fluorescence microscopy has played a major role in characterizing their cellular composition in detail and demonstrating their similarity to the tissue they originate from. In this article, we present a comprehensive protocol for high-resolution 3D imaging of whole organoids upon immunofluorescent labeling. This method is widely applicable for imaging of organoids differing in origin, size and shape. Thus far we have applied the method to airway, colon, kidney, and liver organoids derived from healthy human tissue, as well as human breast tumor organoids and mouse mammary gland organoids. We use an optical clearing agent, FUnGI, which enables the acquisition of whole 3D organoids with the opportunity for single-cell quantification of markers. This three-day protocol from organoid harvesting to image analysis is optimized for 3D imaging using confocal microscopy.


Assuntos
Imageamento Tridimensional/métodos , Organoides/diagnóstico por imagem , Animais , Humanos , Camundongos , Organoides/crescimento & desenvolvimento
5.
Nat Protoc ; 14(6): 1756-1771, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31053799

RESUMO

In vitro 3D organoid systems have revolutionized the modeling of organ development and diseases in a dish. Fluorescence microscopy has contributed to the characterization of the cellular composition of organoids and demonstrated organoids' phenotypic resemblance to their original tissues. Here, we provide a detailed protocol for performing high-resolution 3D imaging of entire organoids harboring fluorescence reporters and upon immunolabeling. This method is applicable to a wide range of organoids of differing origins and of various sizes and shapes. We have successfully used it on human airway, colon, kidney, liver and breast tumor organoids, as well as on mouse mammary gland organoids. It includes a simple clearing method utilizing a homemade fructose-glycerol clearing agent that captures 3D organoids in full and enables marker quantification on a cell-by-cell basis. Sample preparation has been optimized for 3D imaging by confocal, super-resolution confocal, multiphoton and light-sheet microscopy. From organoid harvest to image analysis, the protocol takes 3 d.


Assuntos
Imageamento Tridimensional/métodos , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Imagem Óptica/métodos , Organoides/ultraestrutura , Fixação de Tecidos/métodos , Animais , Mama/ultraestrutura , Colo/ultraestrutura , Feminino , Humanos , Imuno-Histoquímica/métodos , Rim/ultraestrutura , Fígado/ultraestrutura , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA