Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell Microbiol ; 19(4)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27665486

RESUMO

Extracellular vesicles released from pathogens may alter host cell functions. We previously demonstrated the involvement of host cell-derived microvesicles (MVs) during early interaction between Trypanosoma cruzi metacyclic trypomastigote (META) stage and THP-1 cells. Here, we aim to understand the contribution of different parasite stages and their extracellular vesicles in the interaction with host cells. First, we observed that infective host cell-derived trypomastigote (tissue culture-derived trypomastigote [TCT]), META, and noninfective epimastigote (EPI) stages were able to induce different levels of MV release from THP-1 cells; however, only META and TCT could increase host cell invasion. Fluorescence resonance energy transfer microscopy revealed that THP-1-derived MVs can fuse with parasite-derived MVs. Furthermore, MVs derived from the TCT-THP-1 interaction showed a higher fusogenic capacity than those from META- or EPI-THP-1 interaction. However, a higher presence of proteins from META (25%) than TCT (12%) or EPI (5%) was observed in MVs from parasite-THP-1 interaction, as determined by proteomics. Finally, sera from patients with chronic Chagas disease at the indeterminate or cardiac phase differentially recognized antigens in THP-1-derived MVs resulting only from interaction with infective stages. The understanding of intracellular trafficking and the effect of MVs modulating the immune system may provide important clues about Chagas disease pathophysiology.


Assuntos
Micropartículas Derivadas de Células/metabolismo , Doença de Chagas/parasitologia , Monócitos/parasitologia , Trypanosoma cruzi/fisiologia , Animais , Antígenos de Protozoários/imunologia , Micropartículas Derivadas de Células/parasitologia , Doença de Chagas/imunologia , Doença de Chagas/metabolismo , Chlorocebus aethiops , Interações Hospedeiro-Parasita , Humanos , Fusão de Membrana , Camundongos Endogâmicos BALB C , Monócitos/metabolismo , Proteoma/metabolismo , Células Vero
2.
Cell Microbiol ; 17(3): 389-407, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25287304

RESUMO

The release of extracellular vesicles (EV) by fungal organisms is considered an alternative transport mechanism to trans-cell wall passage of macromolecules. Previous studies have revealed the presence of EV in culture supernatants from fungal pathogens, such as Cryptococcus neoformans, Histoplasma capsulatum, Paracoccidioides brasiliensis, Sporothrix schenckii, Malassezia sympodialis and Candida albicans. Here we investigated the size, composition, kinetics of internalization by bone marrow-derived murine macrophages (MO) and dendritic cells (DC), and the immunomodulatory activity of C. albicans EV. We also evaluated the impact of EV on fungal virulence using the Galleria mellonella larvae model. By transmission electron microscopy and dynamic light scattering, we identified two populations ranging from 50 to 100 nm and 350 to 850 nm. Two predominant seroreactive proteins (27 kDa and 37 kDa) and a group of polydispersed mannoproteins were observed in EV by immunoblotting analysis. Proteomic analysis of C. albicans EV revealed proteins related to pathogenesis, cell organization, carbohydrate and lipid metabolism, response to stress, and several other functions. The major lipids detected by thin-layer chromatography were ergosterol, lanosterol and glucosylceramide. Short exposure of MO to EV resulted in internalization of these vesicles and production of nitric oxide, interleukin (IL)-12, transforming growth factor-beta (TGF-ß) and IL-10. Similarly, EV-treated DC produced IL-12p40, IL-10 and tumour necrosis factor-alpha. In addition, EV treatment induced the up-regulation of CD86 and major histocompatibility complex class-II (MHC-II). Inoculation of G. mellonella larvae with EV followed by challenge with C. albicans reduced the number of recovered viable yeasts in comparison with infected larvae control. Taken together, our results demonstrate that C. albicans EV were immunologically active and could potentially interfere with the host responses in the setting of invasive candidiasis.


Assuntos
Candida albicans/química , Candida albicans/imunologia , Fatores Imunológicos/química , Fatores Imunológicos/imunologia , Vesículas Secretórias/química , Vesículas Secretórias/imunologia , Animais , Antígenos de Fungos/análise , Antígenos de Fungos/química , Antígenos de Fungos/imunologia , Candida albicans/citologia , Células Cultivadas , Cromatografia em Camada Fina , Células Dendríticas/metabolismo , Endocitose , Proteínas Fúngicas/análise , Proteínas Fúngicas/química , Proteínas Fúngicas/imunologia , Interleucina-12/metabolismo , Lipídeos/análise , Macrófagos/metabolismo , Camundongos , Microscopia Eletrônica de Transmissão , Peso Molecular , Óxido Nítrico/metabolismo , Proteoma/análise , Vesículas Secretórias/ultraestrutura , Fator de Crescimento Transformador beta/metabolismo
3.
Glycobiology ; 25(11): 1172-82, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26201951

RESUMO

The MUC16 mucin is overexpressed and aberrantly glycosylated in ovarian carcinomas. Immunodetection of circulating MUC16 is one of the most used cancer biomarker assays, but existing antibodies to MUC16 fail to distinguish normal and aberrant cancer glycoforms. Although all antibodies react with the tandem-repeat region, their epitopes appear to be conformational dependent and not definable by a short peptide. Aberrant glycoforms of MUC16 may constitute promising targets for diagnostic and immunotherapeutic intervention, and it is important to develop well-defined immunogens for induction of potent MUC16 immunity. Here, we developed a MUC16 vaccine based on a 1.7TR (264 aa) expressed in Escherichia coli and in vitro enzymatically glycosylated to generate the aberrant cancer-associated glycoform Tn. This vaccine elicited a potent serum IgG response in mice and we identified two major immunodominant linear peptide epitopes within the tandem repeat. We developed one monoclonal antibody, 5E11, reactive with a minimum epitope with the sequence FNTTER. This sequence contains potential N- and O-glycosylation sites and, interestingly, glycosylation blocked binding of 5E11. In immunochemistry of ovarian benign and cancer lesions, 5E11 showed similar reactivity as traditional MUC16 antibodies, suggesting that the epitope is not efficiently glycosylated. The study provides a vaccine design and immunodominant MUC16 TR epitopes.


Assuntos
Anticorpos Monoclonais Murinos/imunologia , Antígeno Ca-125/imunologia , Epitopos/imunologia , Proteínas de Membrana/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais Murinos/química , Antígeno Ca-125/química , Células CHO , Cricetinae , Cricetulus , Epitopos/química , Feminino , Humanos , Proteínas de Membrana/química , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular
4.
Environ Sci Technol ; 49(22): 13283-93, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26488752

RESUMO

The rapidly growing literature on the response of edible plants to nanoceria has provided evidence of its uptake and bioaccumulation, which delineates a possible route of entry into the food chain. However, little is known about how the residing organic matter in soil may affect the bioavailability and resulting impacts of nanoceria on plants. Here, we examined the effect of nanoceria exposure (62.5-500 mg/kg) on kidney bean (Phaseolus vulgaris) productivity and seed quality as a function of soil organic matter content. Cerium accumulation in the seeds produced from plants in organic matter enriched soil showed a dose-dependent increase, unlike in low organic matter soil treatments. Seeds obtained upon nanoceria exposure in soils with higher organic matter were more susceptible to changes in nutrient quality. A quantitative proteomic analysis of the seeds produced upon nanoceria exposure provided evidence for upregulation of stress-related proteins at 62.5 and 125 mg/kg nanoceria treatments. Although the plants did not exhibit overt toxicity, the major seed proteins primarily associated with nutrient storage (phaseolin) and carbohydrate metabolism (lectins) were significantly down-regulated in a dose dependent manner upon nanoceria exposure. This study thus suggests that nanoceria exposures may negatively affect the nutritional quality of kidney beans at the cellular and molecular level. More confirmatory studies with nanoceria along different species using alternative and orthogonal "omic" tools are currently under active investigation, which will enable the identification of biomarkers of exposure and susceptibility.


Assuntos
Cério/farmacologia , Phaseolus/efeitos dos fármacos , Sementes/efeitos dos fármacos , Metabolismo dos Carboidratos/efeitos dos fármacos , Cério/administração & dosagem , Cério/farmacocinética , Cério/toxicidade , Relação Dose-Resposta a Droga , Nanopartículas/administração & dosagem , Nanopartículas/toxicidade , Valor Nutritivo , Phaseolus/metabolismo , Proteínas de Plantas/metabolismo , Proteômica/métodos , Sementes/metabolismo , Poluentes do Solo/administração & dosagem , Poluentes do Solo/farmacocinética , Poluentes do Solo/farmacologia , Distribuição Tecidual
5.
Mol Med ; 19: 263-75, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23922243

RESUMO

Cystatin 9 (CST9) is a member of the type 2 cysteine protease inhibitor family, which has been shown to have immunomodulatory effects that restrain inflammation, but its functions against bacterial infections are unknown. Here, we report that purified human recombinant (r)CST9 protects against the deadly bacterium Francisella tularensis (Ft) in vitro and in vivo. Macrophages infected with the Ft human pathogen Schu 4 (S4), then given 50 pg of rCST9 exhibited significantly decreased intracellular bacterial replication and increased killing via preventing the escape of S4 from the phagosome. Further, rCST9 induced autophagy in macrophages via the regulation of the mammalian target of rapamycin (mTOR) signaling pathways. rCST9 promoted the upregulation of macrophage proteins involved in antiinflammation and antiapoptosis, while restraining proinflammatory-associated proteins. Interestingly, the viability and virulence of S4 also was decreased directly by rCST9. In a mouse model of Ft inhalation, rCST9 significantly decreased organ bacterial burden and improved survival, which was not accompanied by excessive cytokine secretion or subsequent immune cell migration. The current report is the first to show the immunomodulatory and antimicrobial functions of rCST9 against Ft. We hypothesize that the attenuation of inflammation by rCST9 may be exploited for therapeutic purposes during infection.


Assuntos
Antibacterianos/farmacologia , Cistatinas/farmacologia , Francisella tularensis/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Proteínas Recombinantes/farmacologia , Animais , Antibacterianos/uso terapêutico , Movimento Celular/efeitos dos fármacos , Cistatinas/genética , Cistatinas/uso terapêutico , Feminino , Francisella tularensis/patogenicidade , Humanos , Fatores Imunológicos/uso terapêutico , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Fagocitose/efeitos dos fármacos , Proteínas Recombinantes/uso terapêutico , Tularemia/tratamento farmacológico , Tularemia/imunologia , Tularemia/microbiologia , Virulência/efeitos dos fármacos
6.
Plant Physiol ; 160(1): 450-63, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22791304

RESUMO

Glycosylation is the most abundant and complex posttranslational modification to be considered for recombinant production of therapeutic proteins. Mucin-type (N-acetylgalactosamine [GalNAc]-type) O-glycosylation is found in eumetazoan cells but absent in plants and yeast, making these cell types an obvious choice for de novo engineering of this O-glycosylation pathway. We previously showed that transient implementation of O-glycosylation capacity in plants requires introduction of the synthesis of the donor substrate UDP-GalNAc and one or more polypeptide GalNAc-transferases for incorporating GalNAc residues into proteins. Here, we have stably engineered O-glycosylation capacity in two plant cell systems, soil-grown Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum) Bright Yellow-2 suspension culture cells. Efficient GalNAc O-glycosylation of two stably coexpressed substrate O-glycoproteins was obtained, but a high degree of proline hydroxylation and hydroxyproline-linked arabinosides, on a mucin (MUC1)-derived substrate, was also observed. Addition of the prolyl 4-hydroxylase inhibitor 2,2-dipyridyl, however, effectively suppressed proline hydroxylation and arabinosylation of MUC1 in Bright Yellow-2 cells. In summary, stably engineered mammalian type O-glycosylation was established in transgenic plants, demonstrating that plants may serve as host cells for the production of recombinant O-glycoproteins. However, the present stable implementation further strengthens the notion that elimination of endogenous posttranslational modifications may be needed for the production of protein therapeutics.


Assuntos
Acetilgalactosamina/metabolismo , Arabidopsis/metabolismo , Engenharia Genética/métodos , Mucina-1/metabolismo , Nicotiana/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Bactérias/metabolismo , Técnicas de Cultura de Células/métodos , Meios de Cultura/metabolismo , Glicosilação , Humanos , Hidroxilação , Proteínas Luminescentes/metabolismo , Células Vegetais/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Prolina/metabolismo , Estabilidade Proteica , Proteólise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Nicotiana/citologia , Nicotiana/genética
7.
Glycoconj J ; 29(1): 1-12, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22102144

RESUMO

Glycosphingolipids (GSLs) are well known ubiquitous constituents of all eukaryotic cell membranes, yet their normal biological functions are not fully understood. As with other glycoconjugates and saccharides, solid phase display on microarrays potentially provides an effective platform for in vitro study of their functional interactions. However, with few exceptions, the most widely used microarray platforms display only the glycan moiety of GSLs, which not only ignores potential modulating effects of the lipid aglycone, but inherently limits the scope of application, excluding, for example, the major classes of plant and fungal GSLs. In this work, a prototype "universal" GSL-based covalent microarray has been designed, and preliminary evaluation of its potential utility in assaying protein-GSL binding interactions investigated. An essential step in development involved the enzymatic release of the fatty acyl moiety of the ceramide aglycone of selected mammalian GSLs with sphingolipid N-deacylase (SCDase). Derivatization of the free amino group of a typical lyso-GSL, lyso-G(M1), with a prototype linker assembled from succinimidyl-[(N-maleimidopropionamido)-diethyleneglycol] ester and 2-mercaptoethylamine, was also tested. Underivatized or linker-derivatized lyso-GSL were then immobilized on N-hydroxysuccinimide- or epoxide-activated glass microarray slides and probed with carbohydrate binding proteins of known or partially known specificities (i.e., cholera toxin B-chain; peanut agglutinin, a monoclonal antibody to sulfatide, Sulph 1; and a polyclonal antiserum reactive to asialo-G(M2)). Preliminary evaluation of the method indicated successful immobilization of the GSLs, and selective binding of test probes. The potential utility of this methodology for designing covalent microarrays that incorporate GSLs for serodiagnosis is discussed.


Assuntos
Glicômica/métodos , Glicoesfingolipídeos/análise , Glicoesfingolipídeos/química , Análise em Microsséries/métodos , Amidoidrolases/metabolismo , Anticorpos Monoclonais/análise , Anticorpos Monoclonais/metabolismo , Especificidade de Anticorpos , Membrana Celular/química , Toxina da Cólera/análise , Toxina da Cólera/metabolismo , Estrutura Molecular , Aglutinina de Amendoim/análise , Aglutinina de Amendoim/metabolismo , Ligação Proteica
8.
PLoS One ; 10(6): e0130832, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26107617

RESUMO

Anthrax toxin receptors act as molecular clamps or switches that control anthrax toxin entry, pH-dependent pore formation, and translocation of enzymatic moieties across the endosomal membranes. We previously reported that reduction of the disulfide bonds in the immunoglobulin-like (Ig) domain of the anthrax toxin receptor 2 (ANTXR2) inhibited the function of the protective antigen (PA) pore. In the present study, the disulfide linkage in the Ig domain was identified as Cys255-Cys279 and Cys230-Cys315. Specific disulfide bond deletion mutants were achieved by replacing Cys residues with Ala residues. Deletion of the disulfide bond C255-C279, but not C230-C315, inhibited the PA pore-induced release of the fluorescence dyes from the liposomes, suggesting that C255-C279 is essential for PA pore function. Furthermore, we found that deletion of C255-C279 did not affect PA prepore-to-pore conversion, but inhibited PA pore membrane insertion by trapping the PA membrane-inserting loops in proteinaceous hydrophobic pockets. Fluorescence spectra of Trp59, a residue adjacent to the PA-binding motif in von Willebrand factor A (VWA) domain of ANTXR2, showed that deletion of C255-C279 resulted in a significant conformational change on the receptor ectodomain. The disulfide deletion-induced conformational change on the VWA domain was further confirmed by single-particle 3D reconstruction of the negatively stained PA-receptor heptameric complexes. Together, the biochemical and structural data obtained in this study provides a mechanistic insight into the role of the receptor disulfide bond C255-C279 in anthrax toxin action. Manipulation of the redox states of the receptor, specifically targeting to C255-C279, may become a novel strategy to treat anthrax.


Assuntos
Antígenos de Bactérias/química , Toxinas Bacterianas/química , Cisteína/química , Dissulfetos/química , Lipossomos/química , Receptores de Peptídeos/química , Sequência de Aminoácidos , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Sítios de Ligação , Cisteína/metabolismo , Dissulfetos/metabolismo , Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Interações Hidrofóbicas e Hidrofílicas , Imunoglobulinas/química , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , Lipossomos/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Oxirredução , Ligação Proteica , Estrutura Terciária de Proteína , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
J Mass Spectrom ; 45(5): 504-19, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20301184

RESUMO

A method for generation of novel fluorocarbon derivatives of glycosphingolipids (GSLs) with high affinity for fluorocarbon phases has been developed, and their potential applications to mass spectrometry (MS)-based methodologies for glycosphingolipidomics have been investigated. Sphingolipid ceramide N-deacylase (SCDase) is used to remove the fatty acid from the ceramide moiety, after which a fluorocarbon-rich substituent (F-Tag) is incorporated at the free amine of the sphingoid. In initial trials, a neutral GSL, globotriaosylceramide (Gb(3)Cer), three purified bovine brain gangliosides, and four fungal glycosylinositol phosphorylceramides (GIPCs) were de-N-acylated, derivatized by prototype F-Tags, and recovered by solid phase extraction on fluorocarbon-derivatized silica (F-SPE). The efficacy of SCDase treatment of GIPCs was here demonstrated for the first time. Compatibility with subsequent per-N,O-methylation was established for the F-tagged Gb(3) Cer and purified gangliosides, and extensive mass spectra (MS(1) and MS(2)) consistent with all of the expected products were acquired. The potential use of F-tagged derivatives for a comprehensive MS based profiling application was then demonstrated on a crude ganglioside mixture extracted from bovine brain. Finally, a simple trial in microarray format demonstrated fixation of F-tagged G(M1) ganglioside to a fluorous glass surface, with the glycan intact and available for interaction with a fluorescent derivative of cholera toxin B chain. The methods described thus provide a new avenue for rapid GSL recovery or cleanup, potentially compatible with a variety of platforms for mass spectrometric profiling and structure analysis, as well as parallel analysis of functional interactions.


Assuntos
Biologia Computacional/métodos , Fluorocarbonos/química , Glicoesfingolipídeos/química , Espectrometria de Massas/métodos , Animais , Química Encefálica , Bovinos , Fracionamento Químico , Toxina da Cólera/metabolismo , Gangliosídeos/química , Glicoesfingolipídeos/metabolismo , Metilação , Análise em Microsséries/métodos , Triexosilceramidas/química
10.
Glycobiology ; 17(7): 754-66, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17395693

RESUMO

The polypore mushroom Polyporus squamosus is the source of a lectin that exhibits a general affinity for terminal beta-galactosides, but appears to have an extended carbohydrate-binding site with high affinity and strict specificity for the nonreducing terminal trisaccharide sequence NeuAcalpha2 --> 6Galbeta1 --> 4Glc/GlcNAc. In considering the possibility that the lectin's in vivo function could involve interaction with an endogenous glycoconjugate, it would clearly be helpful to identify candidate ligands among various classes of carbohydrate-containing materials expressed by P. squamosus. Since evidence has been accumulating that glycosphingolipids (GSLs) may serve as key ligands for some endogenous lectins in animal species, possible similar roles for fungal GSLs could be considered. For this study, total lipids were extracted from mature fruiting body of P. squamosus. Multistep fractionation yielded a major monohexosylceramide (CMH) component and three major glycosylinositol phosphorylceramides (GIPCs) from the neutral and acidic lipids, respectively. These were characterized by a variety of techniques as required, including one- and two-dimensional (1)H- and (13)C-nuclear magnetic resonance (NMR) spectroscopy; electrospray ionization-mass spectrometry (ESI-MS, tandem-MS/collision-induced decay-MS, and ion trap-MS(n)); and component and methylation linkage analysis by gas chromatography-mass spectrometry. The CMH was determined to be glucosylceramide having a typical ceramide consisting of 2-hydroxy fatty-N-acylated (4E,8E)-9-methyl-sphinga-4,8-dienine. The GIPCs were identified as Manalpha1 --> 2Ins1-P-1Cer (Ps-1), Galbeta1 --> 6Manalpha1 --> 2Ins1-P-1Cer (Ps-2), and Manalpha1 --> 3Fucalpha1 --> 2Galalpha1 --> 6Galbeta1 --> 6Manalpha1 -->2Ins1-P-1Cer (Ps-5), respectively (where Ins = myo-inositol, P = phosphodiester, and Cer = ceramide consisting mainly of long-chain 2-hydroxy and 2,3-dihydroxy fatty-N-acylated 4-hydroxy-sphinganines). Of these GSLs, Ps-2 could potentially interact with P. squamosus lectin, and further investigations will focus on determining the binding affinity, if any, of the lectin for the GIPCs isolated from this fungus.


Assuntos
Glicoesfingolipídeos Acídicos/química , Agaricales/metabolismo , Lectinas/química , Glicoesfingolipídeos Neutros/química , Cromatografia Gasosa , Cromatografia Líquida de Alta Pressão , Glicoesfingolipídeos/química , Glicosilação , Inositol/química , Lipídeos/química , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Metilação , Modelos Químicos , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA