RESUMO
BACKGROUND: The identification of oncogenic mutations in diffuse large B-cell lymphoma (DLBCL) has led to the development of drugs that target essential survival pathways, but whether targeting multiple survival pathways may be curative in DLBCL is unknown. METHODS: We performed a single-center, phase 1b-2 study of a regimen of venetoclax, ibrutinib, prednisone, obinutuzumab, and lenalidomide (ViPOR) in relapsed or refractory DLBCL. In phase 1b, which included patients with DLBCL and indolent lymphomas, four dose levels of venetoclax were evaluated to identify the recommended phase 2 dose, with fixed doses of the other four drugs. A phase 2 expansion in patients with germinal-center B-cell (GCB) and non-GCB DLBCL was performed. ViPOR was administered every 21 days for six cycles. RESULTS: In phase 1b of the study, involving 20 patients (10 with DLBCL), a single dose-limiting toxic effect of grade 3 intracranial hemorrhage occurred, a result that established venetoclax at a dose of 800 mg as the recommended phase 2 dose. Phase 2 included 40 patients with DLBCL. Toxic effects that were observed among all the patients included grade 3 or 4 neutropenia (in 24% of the cycles), thrombocytopenia (in 23%), anemia (in 7%), and febrile neutropenia (in 1%). Objective responses occurred in 54% of 48 evaluable patients with DLBCL, and complete responses occurred in 38%; complete responses were exclusively in patients with non-GCB DLBCL and high-grade B-cell lymphoma with rearrangements of MYC and BCL2 or BCL6 (or both). Circulating tumor DNA was undetectable in 33% of the patients at the end of ViPOR therapy. With a median follow-up of 40 months, 2-year progression-free survival and overall survival were 34% (95% confidence interval [CI], 21 to 47) and 36% (95% CI, 23 to 49), respectively. CONCLUSIONS: Treatment with ViPOR was associated with durable remissions in patients with specific molecular DLBCL subtypes and was associated with mainly reversible adverse events. (Funded by the Intramural Research Program of the National Cancer Institute and the National Center for Advancing Translational Sciences of the National Institutes of Health and others; ClinicalTrials.gov number, NCT03223610.).
Assuntos
Anticorpos Monoclonais Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica , Lenalidomida , Linfoma Difuso de Grandes Células B , Piperidinas , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adenina/análogos & derivados , Adenina/efeitos adversos , Adenina/uso terapêutico , Adenina/administração & dosagem , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Compostos Bicíclicos Heterocíclicos com Pontes/efeitos adversos , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Lenalidomida/efeitos adversos , Lenalidomida/administração & dosagem , Lenalidomida/uso terapêutico , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/mortalidade , Terapia de Alvo Molecular , Piperidinas/efeitos adversos , Piperidinas/uso terapêutico , Piperidinas/administração & dosagem , Prednisona/efeitos adversos , Prednisona/administração & dosagem , Prednisona/uso terapêutico , Intervalo Livre de Progressão , Pirazóis/efeitos adversos , Pirazóis/uso terapêutico , Pirazóis/administração & dosagem , Pirimidinas/efeitos adversos , Pirimidinas/uso terapêutico , Pirimidinas/administração & dosagem , Recidiva , Sulfonamidas/efeitos adversos , Sulfonamidas/administração & dosagem , Sulfonamidas/uso terapêuticoRESUMO
Post-translational modifications (PTMs) greatly expand the structures and functions of proteins in nature1,2. Although synthetic protein functionalization strategies allow mimicry of PTMs3,4, as well as formation of unnatural protein variants with diverse potential functions, including drug carrying5, tracking, imaging6 and partner crosslinking7, the range of functional groups that can be introduced remains limited. Here we describe the visible-light-driven installation of side chains at dehydroalanine residues in proteins through the formation of carbon-centred radicals that allow C-C bond formation in water. Control of the reaction redox allows site-selective modification with good conversions and reduced protein damage. In situ generation of boronic acid catechol ester derivatives generates RH2C⢠radicals that form the native (ß-CH2-γ-CH2) linkage of natural residues and PTMs, whereas in situ potentiation of pyridylsulfonyl derivatives by Fe(II) generates RF2C⢠radicals that form equivalent ß-CH2-γ-CF2 linkages bearing difluoromethylene labels. These reactions are chemically tolerant and incorporate a wide range of functionalities (more than 50 unique residues/side chains) into diverse protein scaffolds and sites. Initiation can be applied chemoselectively in the presence of sensitive groups in the radical precursors, enabling installation of previously incompatible side chains. The resulting protein function and reactivity are used to install radical precursors for homolytic on-protein radical generation; to study enzyme function with natural, unnatural and CF2-labelled post-translationally modified protein substrates via simultaneous sensing of both chemo- and stereoselectivity; and to create generalized 'alkylator proteins' with a spectrum of heterolytic covalent-bond-forming activity (that is, reacting diversely with small molecules at one extreme or selectively with protein targets through good mimicry at the other). Post-translational access to such reactions and chemical groups on proteins could be useful in both revealing and creating protein function.
Assuntos
Luz , Processamento de Proteína Pós-Traducional/efeitos da radiação , Proteínas/química , Proteínas/metabolismo , Alanina/análogos & derivados , Alanina/química , Alanina/metabolismo , Sítios de Ligação , Carbono/química , Carbono/metabolismo , Enzimas/química , Enzimas/metabolismo , Ésteres/síntese química , Ésteres/química , Células HeLa , Humanos , Hidrocarbonetos Fluorados/química , Hidrocarbonetos Fluorados/metabolismo , Indicadores e Reagentes/química , Oxirredução , Processos Fotoquímicos/efeitos da radiação , Domínios e Motivos de Interação entre ProteínasRESUMO
PARP inhibitors have emerged as a promising class of anticancer agents approved for the treatment of ovarian, breast, prostate, and pancreatic cancer. These inhibitors target PARP enzymes involved in DNA repair pathways and exhibit remarkable efficacy in cancers with genetic deficiencies in the homologous recombination pathway responsible for mending DNA double-strand breaks. While all PARP inhibitors demonstrate potent and selective inhibition of PARP1 and PARP2, the key enzymes involved in DNA repair, each agent within the class possesses unique pharmacological profiles distinguishing them from one another. This review aims to comprehensively examine the properties of the entire PARP inhibitor class while emphasizing individual pharmacologic and pharmacokinetic distinctions that inform clinical recommendations. Currently, four agents, namely olaparib, rucaparib, niraparib, and talazoparib, have obtained approval in the United States and Europe. Olaparib, the first approved PARP inhibitor, has been extensively studied and is indicated for a wider range of cancer types. Niraparib and talazoparib, the more recent additions to the PARP inhibitor class, possess the longest half-lives and are formulated for convenient once-daily dosing, alleviating the pill burden for patients when compared to older agents. Moreover, talazoparib undergoes minimal hepatic metabolism, reducing the potential for drug-drug interactions. Notably, niraparib is the sole PARP inhibitor recommended for dose reduction in hepatically impaired populations, whereas talazoparib and olaparib should be dose reduced in renally impaired populations. The mechanisms underlying these dose adjustment recommendations are further explored in this review. Additionally, this review briefly covers veliparib, a PARP inhibitor under development, and two recently approved PARP inhibitors in China, fuzuloparib and pamiparib. Although significant progress has been made in understanding PARP inhibitors, there are several unanswered questions that remain, necessitating further research across a broader spectrum of cancer types within this evolving class of anticancer agents.
RESUMO
Lenalidomide maintenance is associated with a significantly improved progression-free in patients with newly diagnosed multiple myeloma. Maintenance with lenalidomide is generally well tolerated; however, lenalidomide associated diarrhea is a common side effect and bile acid malabsorption has been suggested as an underlying mechanism. We conducted a single arm phase 2 trial of colesevelam, a bile acid binder, for lenalidomide-associated diarrhea in multiple myeloma. Patients were treated with colesevelam daily starting at 1250 mg (2 tablets 625 mg) for 12 weeks. The trial included 25 patients, 1 patient with grade 3 diarrhea, 14 with grade 2, and 10 with grade 1 diarrhea. All patients were on treatment with single agent lenalidomide maintenance and no patient progressed during the trial. Colesevelam treatment was highly effective for treatment of lenalidomide-associated diarrhea; 22 (88%) of the 25 patients responded where 17 patients (68%) had complete resolution of diarrhea, and 5 patients (20%) had improvement by 1 grade of diarrhea. The responses to colesevelam were seen within the first two weeks of treatment. These findings support the conclusion that lenalidomide-associated diarrhea is driven by bile acid malabsorption. Five patients reported mild gastrointestinal side effects including constipation. Importantly, the pharmacokinetics of lenalidomide were not affected by concomitant colesevelam treatment. The stool microbiome composition was not significantly different before and after colesevelam treatment. Patients reported improved diarrhea, fewer gastrointestinal symptoms, and less interference with their daily life after starting colesevelam. In summary, colesevelam was safe and highly effective for treatment of lenalidomide-associated diarrhea in multiple myeloma and does not reduce the clinical effect of lenalidomide.
RESUMO
Metarrestin is a first-in-class small molecule inhibitor targeting the perinucleolar compartment, a subnuclear body associated with metastatic capacity. Promising preclinical results led to the clinical translation of the compound into a first-in-human phase I trial (NCT04222413). To characterize metarrestin's pharmacokinetic profile in humans, a uHPLC-MS/MS assay was developed and validated to determine the disposition of the drug in human plasma. Efficient sample preparation was accomplished through one-step protein precipitation paired with elution through a phospholipid filtration plate. Chromatographic separation was achieved with gradient elution through an Acuity UPLC® BEH C18 column (50 × 2.1 mm, 1.7 µm). Tandem mass spectrometry facilitated the detection of metarrestin and tolbutamide, the internal standard. The effective calibration range spanned 1-5000 ng/mL and was both accurate (range -5.9 % to 4.9 % deviation) and precise (≤9.0 %CV). Metarrestin proved stable (≤4.9 % degradation) under various assay-imposed conditions. Matrix effects, extraction efficiency, and process efficiency were assessed. Further, the assay was successfully able to determine the disposition of orally administered metarrestin in patients from the lowest dose cohort (1 mg) for 48 h post-administration. Thus, the validated analytical method detailed in this work is simple, sensitive, and clinically applicable.
Assuntos
Pirimidinas , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Pirimidinas/farmacocinética , Pirróis/farmacocinética , Cromatografia Líquida de Alta Pressão/métodos , Reprodutibilidade dos TestesRESUMO
Atezolizumab, a humanized monoclonal antibody against programmed cell death ligand 1 (PD-L1), was initially approved in 2016, around the same time that the sponsor published the minimum serum concentration to maintain the saturation of receptor occupancy (6 µg/mL). The initially approved dose regimen of 1200 mg every 3 weeks (q3w) was subsequently modified to 840 mg q2w or 1680 mg q4w through pharmacokinetic simulations. Yet, each standard regimen yields steady-state trough concentrations (CMIN,SS ) far exceeding (≈ 40-fold) the stated target concentration. Additionally, the steady-state area under the plasma drug concentration-time curve (AUCSS ) at 1200 mg q3w was significantly (P = .027) correlated with the probability of adverse events of special interest (AESIs) in patients with non-small cell lung cancer (NSCLC) and, coupled with excess exposure, this provides incentive to explore alternative dose regimens to lower the exposure burden while maintaining an effective CMIN,SS . In this study, we first identified 840 mg q6w as an extended-interval regimen that could robustly maintain a serum concentration of 6 µg/mL (≥99% of virtual patients simulated, n = 1000), then applied this regimen to an approach that administers 2 "loading doses" of standard-interval regimens for a future clinical trial aiming to personalize dose regimens. Each standard dose was simulated for 2 loading doses, then 840 mg q6w thereafter; all yielded cycle-7 CMIN,SS values of >6 µg/mL in >99% of virtual patients. Further, the AUCSS from 840 mg q6w resulted in a flattening (P = .63) of the exposure-response relationship with adverse events of special interest (AESIs). We next aim to verify this in a clinical trial seeking to validate extended-interval dosing in a personalized approach using therapeutic drug monitoring.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resultado do Tratamento , Neoplasias Pulmonares/tratamento farmacológico , Anticorpos Monoclonais Humanizados/farmacocinética , Simulação por ComputadorRESUMO
PURPOSE: Preclinical data showed that prophylactic, low-dose temozolomide (TMZ) significantly prevented breast cancer brain metastasis. We present results of a phase I trial combining T-DM1 with TMZ for the prevention of additional brain metastases after previous occurrence and local treatment in patients with HER2+ breast cancer. PATIENTS AND METHODS: Eligible patients had HER2+ breast cancer with brain metastases and were within 12 weeks of whole brain radiation therapy (WBRT), stereotactic radiosurgery, and/or surgery. Standard doses of T-DM1 were administered intravenously every 21 days (3.6 mg/kg) and TMZ was given orally daily in a 3+3 phase I dose escalation design at 30, 40, or 50 mg/m2, continuously. DLT period was one 21-day cycle. Primary endpoint was safety and recommended phase II dose. Symptom questionnaires, brain MRI, and systemic CT scans were performed every 6 weeks. Cell-free DNA sequencing was performed on patients' plasma and CSF. RESULTS: Twelve women enrolled, nine (75%) with prior SRS therapy and three (25%) with prior WBRT. Grade 3 or 4 AEs included thrombocytopenia (1/12), neutropenia (1/12), lymphopenia (6/12), and decreased CD4 (6/12), requiring pentamidine for Pneumocystis jirovecii pneumonia prophylaxis. No DLT was observed. Four patients on the highest TMZ dose underwent dose reductions. At trial entry, 6 of 12 patients had tumor mutations in CSF, indicating ongoing metastatic colonization despite a clear MRI. Median follow-up on study was 9.6 m (2.8-33.9); only 2 patients developed new parenchymal brain metastases. Tumor mutations varied with patient outcome. CONCLUSIONS: Metronomic TMZ in combination with standard dose T-DM1 shows low-grade toxicity and potential activity in secondary prevention of HER2+ brain metastases.