Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 159(19)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37966002

RESUMO

The H2O and H2O2 molecules resemble each other in a multitude of ways as has been noted in the literature. Here, we present density functional theory (DFT) calculations for the H2O2(s) and H2O2·2H2O(s) crystals and make selected comparisons with ice polymorphs. The performance of a number of dispersion-corrected density functionals-both self-consistent and a posteriori ones-are assessed, and we give special attention to the D3 correction and its effects. The D3 correction to the lattice energies is large: for H2O2(s) the D3 correction constitutes about 25% of the lattice energy using PBE, much more for RPBE, much less for SCAN, and it primarily arises from non-H-bonded interactions out to about 5 Å.The large D3 corrections to the lattice energies are likely a consequence of several effects: correction for missing dispersion interaction, the ability of D3 to capture and correct various other kinds of limitations built into the underlying DFT functionals, and finally some degree of cell-contraction-induced polarization enhancement. We find that the overall best-performing functionals of the twelve examined are optPBEvdW and RPBE-D3. Comparisons with DFT assessments for ices in the literature show that where the same methods have been used, the assessments largely agree.

2.
Molecules ; 27(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35268757

RESUMO

Dissolved ions in aqueous media are ubiquitous in many physicochemical processes, with a direct impact on research fields, such as chemistry, climate, biology, and industry. Ions play a crucial role in the structure of the surrounding network of water molecules as they can either weaken or strengthen it. Gaining a thorough understanding of the underlying forces from small clusters to bulk solutions is still challenging, which motivates further investigations. Through a systematic analysis of the interaction energies obtained from high-level electronic structure methodologies, we assessed various dispersion-corrected density functional approaches, as well as ab initio-based data-driven potential models for halide ion-water clusters. We introduced an active learning scheme to automate the generation of optimally weighted datasets, required for the development of efficient bottom-up anion-water models. Using an evolutionary programming procedure, we determined optimized and reference configurations for such polarizable and first-principles-based representation of the potentials, and we analyzed their structural characteristics and energetics in comparison with estimates from DF-MP2 and DFT+D quantum chemistry computations. Moreover, we presented new benchmark datasets, considering both equilibrium and non-equilibrium configurations of higher-order species with an increasing number of water molecules up to 54 for each F, Cl, Br, and I anions, and we proposed a validation protocol to cross-check methods and approaches. In this way, we aim to improve the predictive ability of future molecular computer simulations for determining the ongoing conflicting distribution of different ions in aqueous environments, as well as the transition from nanoscale clusters to macroscopic condensed phases.

3.
Chemphyschem ; 22(4): 359-369, 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33368985

RESUMO

The formation of specific clathrate hydrates and their transformation at given thermodynamic conditions depends on the interactions between the guest molecule/s and the host water lattice. Understanding their structural stability is essential to control structure-property relations involved in different technological applications. Thus, the energetic aspects relative to CO2 @sI clathrate hydrate are investigated through the computation of the underlying interactions, dominated by hydrogen bonds and van der Waals forces, from first-principles electronic structure approaches. The stability of the CO2 @sI clathrate is evaluated by combining bottom-up and top-down approaches. Guest-free and CO2 guest-filled aperiodic cages, up to the gradually CO2 occupation of the entire sI periodic unit cells were considered. Saturation, cohesive and binding energies for the systems are determined by employing a variety of density functionals and their performance is assessed. The dispersion corrections on the non-covalent interactions are found to be important in the stabilization of the CO2 @sI energies, with the encapsulation of the CO2 into guest-free/empty cage/lattice being always an energetically favorable process for most of the functionals studied. The PW86PBE functional with XDM or D3(BJ) dispersion corrections predicts a lattice constant in accord to the experimental values available, and simultaneously provides a reliable description for the guest-host interactions in the periodic CO2 @sI crystal, as well as the energetics of its progressive single cage occupancy process. It has been found that the preferential orientation of the single CO2 in the large sI crystal cages has a stabilizing effect on the hydrate, concluding that the CO2 @sI structure is favored either by considering the individual building block cages or the complete sI unit cell crystal. Such benchmark and methodology cross-check studies benefit new data-driven model research by providing high-quality training information, with new insights that indicate the underlying factors governing their structure-driven stability, and triggering further investigations for controlling the stabilization of these promising long-term CO2 storage materials.

4.
Chemphyschem ; 21(23): 2618-2628, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33001534

RESUMO

Through reliable first-principles computations, we have demonstrated the impact of CO2 molecules enclathration on the stability of sI clathrate hydrates. Given the delicate balance between the interaction energy components (van der Waals, hydrogen bonds) present on such systems, we follow a systematic bottom-up approach starting from the individual 512 and 512 62 sI cages, up to all existing combinations of two-adjacent sI crystal cages to evaluate how such clathrate-like models perform on the evaluation of the guest-host and first-neighbors inter-cage effects, respectively. Interaction and binding energies of the CO2 occupation of the sI cages were computed using DF-MP2 and different DFT/DFT-D electronic structure methodologies. The performance of selected DFT functionals, together with various semi-classical dispersion corrections schemes, were validated by comparison with reference ab initio DF-MP2 data, as well as experimental data from x-ray and neutron diffraction studies available. Our investigation confirms that the inclusion of the CO2 in the cage/s is an energetically favorable process, with the CO2 molecule preferring to occupy the large 512 62 sI cages compared to the 512 ones. Further, the present results conclude on the rigidity of the water cages arrangements, showing the importance of the inter-cage couplings in the cluster models under study. In particular, the guest-cage interaction is the key factor for the preferential orientation of the captured CO2 molecules in the sI cages, while the inter-cage interactions seems to cause minor distortions with the CO2 guest neighbors interactions do not extending beyond the large 512 62 sI cages. Such findings on these clathrate-like model systems are in accord with experimental observations, drawing a direct relevance to the structural stability of CO2 @sI clathrates.

5.
J Chem Inf Model ; 60(6): 3043-3056, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32469514

RESUMO

Energetics and structural properties of selected type and size He@hydrate frameworks, e.g., from regular structured ice channels to clathrate-like cages, are presented from first-principles quantum chemistry methods. The scarcity of information on He@hydrates makes such complexes challenging targets, while their computational study entails an interesting and arduous task. Some of them have been synthesized in the laboratory, which motivates further investigations on their stability. Hence, the main focus is to examine the performance and accuracy of different wave function-based electronic structure methods, such as MP2, CCSD(T), their explicitly correlated (F12) and domain-based local pair-natural orbital (DLPNO) analogs, as well as modern and conventional density functional theory (DFT) approaches, and analytical model potentials available. Different structures are considered, starting from the "simplest system" formed by a noble gas atom (such as He) and one water molecule, followed by the study of the "fundamental units" present in all ice-like and clathrate-like frameworks (such as pentamers and hexamers) and finally the description of interactions in the "building blocks" of three-dimensional (3D) ice channels (e.g., horizontal and perpendicular ice II and Ih) and clathrate-like cages, such as the 512 present in the most common sI, sII, and sH clathrate-hydrate structures. The idea is to provide well-converged DLPNO-CCSD(T) and DFMP2/CBS reference datasets that in turn are used to validate how DFT functionals (in total, 29 approaches from generalized-gradient approximation (GGA), meta-GGA, to hybrid and range-separated functionals, including dispersion correction treatments, were checked) and analytical semiempirical/ab initio-based potentials perform compared with high-level alternatives. Within all tested approaches, those best-performing were identified and classified. Most of the DFT/DFT-D functionals, as well as available analytical pairwise model potentials, face difficulties in describing both hydrogen-bonded water frameworks and dispersion bound He-water interactions. Including dispersion corrections yields an overall well-balanced performance for LCωPBE-D3BJ and PBE0-D4 functionals. Such benchmark datasets can benefit research into the development of new cheminformatics models, as can serve to guide and cross-check methodologies, lending increased predicted power to future molecular simulations for investigating the role of structures and phase transitions from nanoscale clusters to macroscopic crystalline structures.


Assuntos
Benchmarking , Gelo , Hidrocarbonetos Aromáticos com Pontes , Água
6.
J Phys Chem A ; 124(20): 4036-4047, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32370498

RESUMO

We have investigated different approaches to handling parallel-tempering Monte Carlo (PTMC) simulations in the isothermal-isobaric ensemble of molecular cluster/nanoparticle systems for predicting structural phase diagram transitions. We have implemented various methodologies that consist of treating pressure implicitly through its effect on the volume. Thus, the main problem in the simulations under nonzero pressure becomes the volume definition of the finite nonperiodic system, and we considered approaches based on the particles' coordinates. Various volume models, namely container-volume, particle-volume, average-volume, ellipsoids-volume, and convex hull-volume, were employed, and the required corrections for each of them in the Monte Carlo computations were introduced. Finally, we explored the effects of volume/pressure changes for all models on structural phase transitions of a test system, such as the small "icelike" (H2O)12 water cluster. The temperature and pressure dependence of the cluster's heat capacity and energy-volume Pearson correlation coefficient were studied, phase diagrams were constructed using a multiple-histogram method, and attempts were made to identify phase transitions to particular cluster structures. Our results show significant differences between the employed volume models, and we discuss all pressure-induced, such as solid-solid-, solid-liquid-, and liquid-gas-like, phase transformations in the present study.

7.
Chemistry ; 24(37): 9353-9363, 2018 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-29600599

RESUMO

Clathrate hydrates of CO2 have been proposed as potential molecular materials in tackling important environmental problems related to greenhouse gases capture and storage. Despite the increasing interest in such hydrates and their technological applications, a molecular-level understanding of their formation and properties is still far from complete. Modeling interactions is a challenging and computationally demanding task, essential to reliably determine molecular properties. First-principles calculations for the CO2 guest in all sI, sII, and sH clathrate cages were performed, and the nature of the guest-host interactions, dominated by both hydrogen-bond and van der Waals forces, was systematically investigated. Different families of density functionals, as well as pairwise CO2 @H2 O model potentials versus wavefunction-based quantum approaches were studied for CO2 clathrate-like systems. Benchmark energies for new distance-dependent datasets, consisting of potential energy curves sampling representative configurations of the systems at the repulsive, near-equilibrium, and asymptotic/long-range regions of the full-dimensional surface, were generated, and a general protocol was proposed to assess the accuracy of such conventional and modern approaches at minimum and non-minimum orientations. Our results show that dispersion interactions are important in the guest-host stabilization energies of such clathrate cages, and the encapsulation of the CO2 into guest-free clathrate cages is always energetically favorable. In addition, the orientation of CO2 inside each cage was explored, and the ability of current promising approaches to accurately describe non-covalent CO2 @H2 O guest-host interactions in sI, sII, and sH clathrates was discussed, providing information for their applicability to future multiscale computer simulations.

8.
J Phys Chem A ; 122(5): 1479-1487, 2018 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-29328645

RESUMO

Recently, empty hydrate structures sI, sII, sH, and others have been proposed as low-density ice structures by both experimental observations and computer simulations. Some of them have been synthesized in the laboratory, which motivates further investigations on the stability of such guest-free clathrate structures. Using semiempirical and ab initio-based water models, as well as dispersion-corrected density functional theory approaches, we predict their stability, including cooperative many-body effects, in comparison with reference data from converged wave function-based DF-MP2 electronic structure calculations. We show that large basis sets and counterpoise corrections are required to improve convergence in the interaction/binding energies for such systems. Therefore, extrapolation schemes based on triple/quadruple and quadruple/quintuple ζ quality basis sets are used to reach high accuracy. Eleven different water structures corresponding to dodecahedron, edge sharing, face sharing, and fused cubes, as a part of the WATER27 database, as well as cavities from the sI, sII, and sH clathrate hydrates formed by 20, 24, 28, and 36 water molecules, are employed, and new benchmark energies are reported. Using these benchmark sets of interaction energies, we assess the performance of both analytical models and direct DFT calculations for such clathrate-like systems. In particular, seven popular water models (TIP4P/ice, TIP4P/2005, q-TIP4P/F, TTM2-F, TTM3-F, TTM4-F, and MB-pol) available in the literature, and nine density functional approximations (3 meta-GGAs, 3 hybrids, and 3 range separated functionals) are used to investigate their accuracy. By including dispersion corrections, our results show that errors in the interaction energies are reduced for most of the DFT functionals. Despite the difficulties faced by current water models and DFT functionals to accurately describe the interactions in such water systems, we found some general trends that could serve to extend their applicability to larger systems.

9.
J Phys Chem A ; 119(10): 1859-66, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25647222

RESUMO

The strong temperature dependence of the I(-)·(H2O)2 vibrational predissociation spectrum is traced to the intracluster dissociation of the ion-bound water dimer into independent water monomers that remain tethered to the ion. The thermodynamics of this process is determined using van't Hoff analysis of key features that quantify the relative populations of H-bonded and independent water molecules. The dissociation enthalpy of the isolated water dimer is thus observed to be reduced by roughly a factor of three upon attachment to the ion. The cause of this reduction is explored with electronic structure calculations of the potential energy profile for dissociation of the dimer, which suggest that both reduction of the intrinsic binding energy and vibrational zero-point effects act to weaken the intermolecular interaction between the water molecules in the first hydration shell. Additional insights are obtained by analyzing how classical trajectories of the I(-)·(H2O)2 system sample the extended potential energy surface with increasing temperature.

10.
J Colloid Interface Sci ; 570: 212-222, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32151831

RESUMO

HYPOTHESIS: The internal topology of soft nanoparticles - regular (ideal) vs disordered (realistic) networks - and its intrinsic deformability (degree of cross-linking) influences solvent permeability (uptake, invasive and mixing capacities) under interfacial confinement. METHODOLOGY: By means of large-scale molecular dynamics simulations we study nanogels at liquid-liquid (A-B) interfaces covering the whole range of cross-linking degrees and interfacial strengths. The nanogel permeability is analyzed with a grid representation that accounts for the surface fluctuations and adds to the density profiles the exact number of liquid particles inside the nanogel. Unlike in previous investigations, excluded volume interactions are considered for all the particles (monomers and liquids). FINDINGS: Nanogel's permeability is intrinsically related to the particle deformability. Ideal networks show higher values of the total liquid uptake and the invasive capacity (A-particles in B-side and vice versa) than realistic networks, though differences vanish in the limit of rigid interfaces. Uptake and invasion are optimized at a cross-linking degree that depends on the interfacial strength, tending to ~15-20% for moderate and stiff interfaces. As the interfacial strength increases, the miscibility inside the nanogel is enhanced by a factor of up to 5 with respect to the bare interface, with the disordered networks providing a better mixing than their ideal counterparts.

11.
Polymers (Basel) ; 12(3)2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32121665

RESUMO

This study reports a general scenario for the out-of-equilibrium features of collapsing polymeric architectures. We use molecular dynamics simulations to characterize the coarsening kinetics, in bad solvent, for several macromolecular systems with an increasing degree of structural complexity. In particular, we focus on: flexible and semiflexible polymer chains, star polymers with 3 and 12 arms, and microgels with both ordered and disordered networks. Starting from a powerful analogy with critical phenomena, we construct a density field representation that removes fast fluctuations and provides a consistent characterization of the domain growth. Our results indicate that the coarsening kinetics presents a scaling behaviour that is independent of the solvent quality parameter, in analogy to the time-temperature superposition principle. Interestingly, the domain growth in time follows a power-law behaviour that is approximately independent of the architecture for all the flexible systems; while it is steeper for the semiflexible chains. Nevertheless, the fractal nature of the dense regions emerging during the collapse exhibits the same scaling behaviour for all the macromolecules. This suggests that the faster growing length scale in the semiflexible chains originates just from a faster mass diffusion along the chain contour, induced by the local stiffness. The decay of the dynamic correlations displays scaling behavior with the growing length scale of the system, which is a characteristic signature in coarsening phenomena.

12.
J Phys Chem B ; 120(8): 1822-32, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26560189

RESUMO

New potential energy functions (i-TTM) describing the interactions between halide ions and water molecules are reported. The i-TTM potentials are derived from fits to electronic structure data and include an explicit treatment of two-body repulsion, electrostatics, and dispersion energy. Many-body effects are represented through classical polarization within an extended Thole-type model. By construction, the i-TTM potentials are compatible with the flexible and fully ab initio MB-pol potential, which has recently been shown to accurately predict the properties of water from the gas to the condensed phase. The accuracy of the i-TTM potentials is assessed through extensive comparisons with CCSD(T)-F12, DF-MP2, and DFT data as well as with results obtained with common polarizable force fields for X(-)(H2O)n clusters with X(-) = F(-), Cl(-), Br(-), and I(-), and n = 1-8. By construction, the new i-TTM potentials will enable direct simulations of vibrational spectra of halide-water systems from clusters to bulk and interfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA