RESUMO
Acetaminophenol, commonly recognized as paracetamol (considered safer than aspirin) is formed by nitration of phenol (4-nitrophenol (4-NP)) for its conversion to 4-aminophenol (4-AP), followed by the acetylation for the final product. As 4-NP is an intermediate product in acetaminophenol (paracetamol) production from phenol the dynamic analysis of acetylation of amine group is important. This study focuses on the feasibility of spectroscopic studies to monitor the removal of 4-NP using sodium borohydride (NaBH4) probe reaction in the presence of silver, gold, and bimetallic Ag/Au nanoparticles. UV-visible absorbance and fluorescence spectroscopy measurements reveal the formation of 1,4-benzoquinone (BQ), hydroquinone (HQ), and phenol (Ph) as the final products, in addition to the formation of typically reported 4-AP. The intermediates of NaBH4 seem to play a significant role in the formation of BQ, which converts to HQ in the basic medium followed by the formation of phenol in an acidic medium. Complete kinetic analysis with respect to spectroscopic studies of the standard compounds is presented. Similar results were obtained with 4-NP spiked river and seawater samples. The present ï¬ndings may lead to catalytic benchmarking that can diï¬er from most of the current practices and highlight the importance of adopting a holistic approach towards the fundamental understanding of 4-NP catalytic reduction that must take into account the concentration of NaBH4 and pH interdependencies.
Assuntos
Ouro , Nanopartículas Metálicas , Acetaminofen , Aminofenóis , Ouro/química , Cinética , Nanopartículas Metálicas/química , Nitrofenóis , FenóisRESUMO
Averaging and shifting the refractive index profiles of quasiperiodic structure reveals the formation of several localized modes in the reflectivity spectrum and were used to generate different spectral barcodes. By associating the depth and wavelength of the observed resonant modes to the thickness and position of blackbars, respectively, the possibility to generate multiple codes has been shown. An experimental verification was carried out with multilayered dielectric porous silicon structures with reflectivity spectra revealing unique photonic fingerprints.
RESUMO
Tunability of the optical response of multilayered photonic structures has been compared with sequential (SQ) and superposition (SP) addition of refractive index profile functions. The optical response of the composite multilayered structure, formed after the SP addition of the two Bragg type refractive index profile functions has been studied as a function of percentage overlap and relative shift between the profiles. Apart from the substantial advantage in terms of the reduced physical thickness of the SP composite structures (over the SQ addition), at certain optimum values of relative shift, photonic structures with better quality factor resonant modes or a broader PBG could be designed. Similar analysis has been extended for rugate filters as well. The experimental verification of the optical response, was carried out through multilayered dielectric porous silicon structures fabricated by electrochemical anodization.