RESUMO
ABSTRACT: T-prolymphocytic leukemia (T-PLL) is a mature T-cell neoplasm associated with marked chemotherapy resistance and continued poor clinical outcomes. Current treatments, that is, the CD52-antibody alemtuzumab, offer transient responses, with relapses being almost inevitable without consolidating allogeneic transplantation. Recent more detailed concepts of T-PLL's pathobiology fostered the identification of actionable vulnerabilities: (1) altered epigenetics, (2) defective DNA damage responses, (3) aberrant cell-cycle regulation, and (4) deregulated prosurvival pathways, including T-cell receptor and JAK/STAT signaling. To further develop related preclinical therapeutic concepts, we studied inhibitors of histone deacetylases ([H]DACs), B-cell lymphoma 2 (BCL2), cyclin-dependent kinase (CDK), mouse double minute 2 (MDM2), and classical cytostatics, using (1) single-agent and combinatorial compound testing in 20 well-characterized and molecularly profiled primary T-PLL (validated by additional 42 cases) and (2) 2 independent murine models (syngeneic transplants and patient-derived xenografts). Overall, the most efficient/selective single agents and combinations (in vitro and in mice) included cladribine, romidepsin ([H]DAC), venetoclax (BCL2), and/or idasanutlin (MDM2). Cladribine sensitivity correlated with expression of its target RRM2. T-PLL cells revealed low overall apoptotic priming with heterogeneous dependencies on BCL2 proteins. In additional 38 T-cell leukemia/lymphoma lines, TP53 mutations were associated with resistance toward MDM2 inhibitors. P53 of T-PLL cells, predominantly in wild-type configuration, was amenable to MDM2 inhibition, which increased its MDM2-unbound fraction. This facilitated P53 activation and downstream signals (including enhanced accessibility of target-gene chromatin regions), in particular synergy with insults by cladribine. Our data emphasize the therapeutic potential of pharmacologic strategies to reinstate P53-mediated apoptotic responses. The identified efficacies and their synergies provide an informative background on compound and patient selection for trial designs in T-PLL.
Assuntos
Apoptose , Dano ao DNA , Leucemia Prolinfocítica de Células T , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Apoptose/efeitos dos fármacos , Humanos , Dano ao DNA/efeitos dos fármacos , Animais , Camundongos , Leucemia Prolinfocítica de Células T/tratamento farmacológico , Leucemia Prolinfocítica de Células T/genética , Leucemia Prolinfocítica de Células T/metabolismo , Leucemia Prolinfocítica de Células T/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Sulfonamidas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidoresRESUMO
Grasses derive from a family of monocotyledonous plants that includes crops of major economic importance such as wheat, rice, sorghum and barley, sharing a common ancestor some 100 million years ago. The genomic attributes of plant adaptation remain obscure and the consequences of recurrent whole genome duplications (WGD) or polyploidization events, a major force in plant evolution, remain largely speculative. We conducted a comparative analysis of omics data from ten grass species to unveil structural (inversions, fusions, fissions, duplications, substitutions) and regulatory (expression and methylation) basis of genome plasticity, as possible attributes of plant long lasting evolution and adaptation. The present study demonstrates that diverged polyploid lineages sharing a common WGD event often present the same patterns of structural changes and evolutionary dynamics, but these patterns are difficult to generalize across independent WGD events as a result of non-WGD factors such as selection and domestication of crops. Polyploidy is unequivocally linked to the evolutionary success of grasses during the past 100 million years, although it remains difficult to attribute this success to particular genomic consequences of polyploidization, suggesting that polyploids harness the potential of genome duplication, at least partially, in lineage-specific ways. Overall, the present study clearly demonstrates that post-polyploidization reprogramming is more complex than traditionally reported in investigating single species and calls for a critical and comprehensive comparison across independently polyploidized lineages.
Assuntos
Genoma de Planta , Poaceae , Poaceae/genética , Genoma de Planta/genética , Filogenia , Evolução Molecular , Grão Comestível/genética , Poliploidia , Duplicação GênicaRESUMO
Exaggerated sexually selected traits, often carried by males, are characterized by the evolution of hyperallometry, resulting in their disproportionate growth relative to the rest of the body among individuals of the same population. While the evolution of allometry has attracted much attention for centuries, our understanding of the developmental genetic mechanisms underlying its emergence remains fragmented. Here we conduct comparative transcriptomics of the legs followed by an RNA interference (RNAi) screen to identify genes that play a role in the hyperallometric growth of the third legs in the males of the water strider Microvelia longipes. We demonstrate that a broadly expressed growth factor, Bone Morphogenetic Protein 11 (BMP11, also known as Growth Differentiation Factor 11), regulates leg allometries through increasing the allometric slope and mean body size in males. In contrast, BMP11 RNAi reduced mean body size but did not affect slope either in the females of M. longipes or in the males and females of other closely related Microvelia species. Furthermore, our data show that a tissue-specific factor, Ultrabithorax (Ubx), increases intercept without affecting mean body size. This indicates a genetic correlation between mean body size and variation in allometric slope, but not intercept. Strikingly, males treated with BMP11 RNAi exhibited a severe reduction in fighting frequency compared to both controls and Ubx RNAi-treated males. Therefore, male body size, the exaggerated weapon, and the intense fighting behavior associated with it are genetically correlated in M. longipes. Our results support a possible role of pleiotropy in the evolution of allometric slope.
Assuntos
Tamanho Corporal/fisiologia , Proteínas Morfogenéticas Ósseas/metabolismo , Heterópteros/genética , Agressão/fisiologia , Animais , Evolução Biológica , Proteínas Morfogenéticas Ósseas/genética , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Hemípteros/genética , Hemípteros/metabolismo , Heterópteros/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Hormônios Juvenis/genética , Hormônios Juvenis/metabolismo , Masculino , Fenótipo , Seleção Genética/genética , Caracteres Sexuais , Transcriptoma/genéticaRESUMO
BACKGROUND: Bread wheat is a recent allohexaploid (genomic constitution AABBDD) that emerged through a hybridization between tetraploid Triticum turgidum (AABB) and diploid Aegilops tauschii (DD) less than 10,000 years ago. The hexaploidization can be re-created artificially, producing synthetic wheat that has been used to study immediate genomic responses to polyploidization. The scale of the consequences of polyploidization, and their mechanism of establishment, remain uncertain. RESULTS: Here we sampled several synthetic wheats from alternative parental genotypes and reciprocal crosses, and examined transcriptomes from two different tissues and successive generations. We did not detect any massive reprogramming in gene expression, with only around 1% of expressed genes showing significant differences compared to their lower-ploidy parents. Most of this differential expression is located on the D subgenome, without consistency in the direction of the expression change. Homoeolog expression bias in synthetic wheat is similar to the pattern observed in the parents. Both differential expression and homoeolog bias are tissue-specific. While up to three families of transposable elements became upregulated in wheat synthetics, their position and distance are not significantly associated with expression changes in proximal genes. DISCUSSION: While only a few genes change their expression pattern after polyploidization, they can be involved in agronomically important pathways. Alternative parental combinations can lead to opposite changes on the same subset of D-located genes, which is relevant for harnessing new diversity in wheat breeding. Tissue specificity of the polyploidization-triggered expression changes indicates the remodelling of transcriptomes in synthetic wheat is plastic and likely caused by regulome interactions rather than permanent changes. We discuss the pitfalls of transcriptomic comparisons across ploidy levels that can inflate the de-regulation signal. CONCLUSIONS: Transcriptomic response to polyploidization in synthetic AABBDD wheat is modest and much lower than some previous estimates. Homoeolog expression bias in wheat allohexaploids is mostly attributed to parental legacy, with polyploidy having a mild balancing effect.
Assuntos
Transcriptoma , Triticum , Triticum/genética , Melhoramento Vegetal , Perfilação da Expressão Gênica , Ploidias , Poliploidia , Genoma de PlantaRESUMO
Key innovations enable access to new adaptive zones and are often linked to increased species diversification. As such, innovations have attracted much attention, yet their concrete consequences on the subsequent evolutionary trajectory and diversification of the bearing lineages remain unclear. Water striders and relatives (Hemiptera: Heteroptera: Gerromorpha) represent a monophyletic lineage of insects that transitioned to live on the water-air interface and that diversified to occupy ponds, puddles, streams, mangroves and even oceans. This lineage offers an excellent model to study the patterns and processes underlying species diversification following the conquest of new adaptive zones. However, such studies require a reliable and comprehensive phylogeny of the infraorder. Based on whole transcriptomic datasets of 97 species and fossil records, we reconstructed a new phylogeny of the Gerromorpha that resolved inconsistencies and uncovered strong support for previously unknown relationships between some important taxa. We then used this phylogeny to reconstruct the ancestral state of a set of adaptations associated with water surface invasion (fluid locomotion, dispersal and transition to saline waters) and sexual dimorphism. Our results uncovered important patterns and dynamics of phenotypic evolution, revealing how the initial event of water surface invasion enabled multiple subsequent transitions to new adaptive zones on the water surfaces. This phylogeny and the associated transcriptomic datasets constitute highly valuable resources, making Gerromorpha an attractive model lineage to study phenotypic evolution.
Assuntos
Heterópteros , Animais , Heterópteros/genética , Filogenia , Transcriptoma , Fósseis , InsetosRESUMO
Naturalists have been fascinated for centuries by animal colors and color patterns. While widely studied at the adult stage, we know little about color patterns in the embryo. Here, we study a trait consisting of coloration that is specific to the embryo and absent from postembryonic stages in water striders (Gerromorpha). By combining developmental genetics with chemical and phylogenetic analyses across a broad sample of species, we uncovered the mechanisms underlying the emergence and diversification of embryonic colors in this group of insects. We show that the pteridine biosynthesis pathway, which ancestrally produces red pigment in the eyes, has been recruited during embryogenesis in various extraocular tissues including antennae and legs. In addition, we discovered that this cooption is common to all water striders and initially resulted in the production of yellow extraocular color. Subsequently, 6 lineages evolved bright red color and 2 lineages lost the color independently. Despite the high diversity in colors and color patterns, we show that the underlying biosynthesis pathway remained stable throughout the 200 million years of Gerromorpha evolutionary time. Finally, we identified erythropterin and xanthopterin as the pigments responsible for these colors in the embryo of various species. These findings demonstrate how traits can emerge through the activation of a biosynthesis pathway in new developmental contexts.
Assuntos
Cor , Embrião não Mamífero/metabolismo , Heterópteros/fisiologia , Pigmentação/fisiologia , Pigmentos Biológicos/metabolismo , Pteridinas/metabolismo , Transdução de Sinais , Animais , Evolução Biológica , Embrião não Mamífero/citologia , Olho/citologia , Olho/metabolismo , Heterópteros/classificação , Fenótipo , FilogeniaRESUMO
BACKGROUND: Exaggerated secondary sexual traits are widespread in nature and often evolve under strong directional sexual selection. Although heavily studied from both theoretical and empirical viewpoints, we have little understanding of how sexual selection influences sex-biased gene regulation during the development of exaggerated secondary sexual phenotypes, and how these changes are reflected in genomic architecture. This is primarily due to the limited availability of representative genomes and associated tissue and sex transcriptomes to study the development of these traits. Here we present the genome and developmental transcriptomes, focused on the legs, of the water strider Microvelia longipes, a species where males exhibit strikingly long third legs compared to females, which they use as weapons. RESULTS: We generated a high-quality genome assembly with 90% of the sequence captured in 13 scaffolds. The most exaggerated legs in males were particularly enriched in both sex-biased and leg-biased genes, indicating a specific signature of gene expression in association with trait exaggeration. We also found that male-biased genes showed patterns of fast evolution compared to non-biased and female-biased genes, indicative of directional or relaxed purifying selection. By contrast to male-biased genes, female-biased genes that are expressed in the third legs, but not the other legs, are over-represented in the X chromosome compared to the autosomes. An enrichment analysis for sex-biased genes along the chromosomes revealed also that they arrange in large genomic regions or in small clusters of two to four consecutive genes. The number and expression of these enriched regions were often associated with the exaggerated legs of males, suggesting a pattern of common regulation through genomic proximity in association with trait exaggeration. CONCLUSION: Our findings indicate how directional sexual selection may drive sex-biased gene expression and genome architecture along the path to trait exaggeration and sexual dimorphism.
Assuntos
Genoma , Feminino , Humanos , Masculino , Fenótipo , Seleção Genética , Caracteres Sexuais , Transcriptoma , ÁguaRESUMO
BACKGROUND: Transposable elements (TEs) are a major component of metazoan genomes and are associated with a variety of mechanisms that shape genome architecture and evolution. Despite the ever-growing number of insect genomes sequenced to date, our understanding of the diversity and evolution of insect TEs remains poor. RESULTS: Here, we present a standardized characterization and an order-level comparison of arthropod TE repertoires, encompassing 62 insect and 11 outgroup species. The insect TE repertoire contains TEs of almost every class previously described, and in some cases even TEs previously reported only from vertebrates and plants. Additionally, we identified a large fraction of unclassifiable TEs. We found high variation in TE content, ranging from less than 6% in the antarctic midge (Diptera), the honey bee and the turnip sawfly (Hymenoptera) to more than 58% in the malaria mosquito (Diptera) and the migratory locust (Orthoptera), and a possible relationship between the content and diversity of TEs and the genome size. CONCLUSION: While most insect orders exhibit a characteristic TE composition, we also observed intraordinal differences, e.g., in Diptera, Hymenoptera, and Hemiptera. Our findings shed light on common patterns and reveal lineage-specific differences in content and evolution of TEs in insects. We anticipate our study to provide the basis for future comparative research on the insect TE repertoire.
Assuntos
Elementos de DNA Transponíveis/genética , Evolução Molecular , Variação Genética , Insetos/genética , Animais , Regiões Antárticas , Sequência de Bases , Tamanho do Genoma , Genoma de Inseto , FilogeniaRESUMO
BACKGROUND: Having conquered water surfaces worldwide, the semi-aquatic bugs occupy ponds, streams, lakes, mangroves, and even open oceans. The diversity of this group has inspired a range of scientific studies from ecology and evolution to developmental genetics and hydrodynamics of fluid locomotion. However, the lack of a representative water strider genome hinders our ability to more thoroughly investigate the molecular mechanisms underlying the processes of adaptation and diversification within this group. RESULTS: Here we report the sequencing and manual annotation of the Gerris buenoi (G. buenoi) genome; the first water strider genome to be sequenced thus far. The size of the G. buenoi genome is approximately 1,000 Mb, and this sequencing effort has recovered 20,949 predicted protein-coding genes. Manual annotation uncovered a number of local (tandem and proximal) gene duplications and expansions of gene families known for their importance in a variety of processes associated with morphological and physiological adaptations to a water surface lifestyle. These expansions may affect key processes associated with growth, vision, desiccation resistance, detoxification, olfaction and epigenetic regulation. Strikingly, the G. buenoi genome contains three insulin receptors, suggesting key changes in the rewiring and function of the insulin pathway. Other genomic changes affecting with opsin genes may be associated with wavelength sensitivity shifts in opsins, which is likely to be key in facilitating specific adaptations in vision for diverse water habitats. CONCLUSIONS: Our findings suggest that local gene duplications might have played an important role during the evolution of water striders. Along with these findings, the sequencing of the G. buenoi genome now provides us the opportunity to pursue exciting research opportunities to further understand the genomic underpinnings of traits associated with the extreme body plan and life history of water striders.
Assuntos
Genoma , Heterópteros/genética , Heterópteros/fisiologia , Proteínas de Insetos/genética , Adaptação Fisiológica , Animais , Evolução Molecular , Genômica , Heterópteros/classificação , Fenótipo , FilogeniaRESUMO
The semi-aquatic bugs (Heteroptera, Gerromorpha) conquered water surfaces worldwide and diversified to occupy puddles, ponds, streams, lakes, mangroves and even oceans. Critical to this lifestyle is the evolution of sets of hairs that allow these insects to maintain their body weight on the water surface and protect the animals against wetting and drowning. In addition, the legs of these insects are equipped with various grooming combs that are important for cleaning and tidying the hair layers for optimal functional efficiency. Here we show that the hairs covering the legs of water striders represent innervated bristles. Genomic and transcriptomic analyses revealed that in water striders the achaete-scute complex, known to control bristle development in flies, contains only the achaete-scute homologue (ASH) gene owing to the loss of the gene asense. Using RNA interference, we show that ASH plays a pivotal role in the development of both bristles and grooming combs in water striders. Our data suggest that the ASH locus may have contributed to the adaptation to water surface lifestyle through shaping the hydrophobic bristles that prevent water striders from wetting and allow them to exploit water surface tension.
Assuntos
Região do Genoma do Complexo Achaete-Scute/genética , Padronização Corporal/genética , Heterópteros/crescimento & desenvolvimento , Proteínas de Insetos/genética , Animais , Heterópteros/genética , Proteínas de Insetos/metabolismoRESUMO
Growth control scales morphological attributes and, therefore, provides a critical contribution to the evolution of adaptive traits. Yet, the genetic mechanisms underlying growth in the context of specific ecological adaptations are poorly understood. In water striders, adaptation to locomotion on the water surface is associated with allometric and functional changes in thoracic appendages, such that T2-legs, used as propelling oars, are longer than T3-legs, used as steering rudders. The Hox gene Ubx establishes this derived morphology by elongating T2-legs but shortening T3-legs. Using gene expression assays, RNAi knockdown, and comparative transcriptomics, we demonstrate that the evolution of water surface rowing as a novel means of locomotion is associated with the evolution of a dose-dependent promoting-repressing effect of Ubx on leg growth. In the water strider Limnoporus dissortis, T3-legs express six to seven times higher levels of Ubx compared to T2-legs. Ubx RNAi shortens T2-legs and the severity of this phenotype increases with increased depletion of Ubx protein. Conversely, Ubx RNAi lengthens T3-legs but this phenotype is partially rescued when Ubx protein is further depleted. This dose-dependent effect of Ubx on leg growth is absent in non-rowing relatives that retain the ancestral relative leg length. We also show that the spatial patterns of expression of dpp, wg, hh, egfr, dll, exd, hth, and dac are unchanged in Ubx RNAi treatments. This indicates that the dose-dependent opposite effect of Ubx on T2- and T3-legs operates without any apparent effect on the spatial expression of major leg patterning genes. Our data suggest that scaling of adaptive allometries can evolve through changes in the levels of expression of Hox proteins early during ontogeny, and in the sensitivity of the tissues that express them, without any major effects on pattern formation.
Assuntos
Adaptação Biológica/fisiologia , Evolução Biológica , Extremidades/crescimento & desenvolvimento , Regulação da Expressão Gênica/fisiologia , Heterópteros/crescimento & desenvolvimento , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Análise de Variância , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Heterópteros/genética , Hibridização In Situ , Interferência de RNARESUMO
Many aspects of the genomes of yeast species in the family Saccharomycetaceae have been well conserved during evolution. They have similar genome sizes, genome contents, and extensive collinearity of gene order along chromosomes. Gene functions can often be inferred reliably by using information from Saccharomyces cerevisiae. Beyond this conservative picture however, there are many instances where a species or a clade diverges substantially from the S. cerevisiae paradigm-for example, by the amplification of a gene family, or by the absence of a biochemical pathway or a protein complex. Here, we review clade-specific features, focusing on genomes sequenced in our laboratory from the post-WGD genera Naumovozyma, Kazachstania and Tetrapisispora, and from the non-WGD species Torulaspora delbrueckii. Examples include the loss of the pathway for histidine synthesis in the cockroach-associated species Tetrapisispora blattae; the presence of a large telomeric GAL gene cluster in To. delbrueckii; losses of the dynein and dynactin complexes in several independent yeast lineages; fragmentation of the MAT locus and loss of the HO gene in Kazachstania africana; and the patchy phylogenetic distribution of RNAi pathway components.
Assuntos
Evolução Molecular , Genoma Fúngico/genética , Saccharomyces cerevisiae/genética , Torulaspora/genética , Evolução Biológica , Sequência Conservada , Complexo Dinactina , Dineínas/genética , Genes Fúngicos , Histidina/biossíntese , Proteínas Associadas aos Microtúbulos/genética , Família Multigênica/genética , Interferência de RNA , Proteínas de Saccharomyces cerevisiae/genéticaRESUMO
We report the development of SearchDOGS Bacteria, software to automatically detect missing genes in annotated bacterial genomes by combining BLAST searches with comparative genomics. Having successfully applied the approach to yeast genomes, we redeveloped SearchDOGS to function as a standalone, downloadable package, requiring only a set of GenBank annotation files as input. The software automatically generates a homology structure using reciprocal BLAST and a synteny-based method; this is followed by a scan of the entire genome of each species for unannotated genes. Results are provided in a HTML interface, providing coordinates, BLAST results, syntenic location, omega values (Ka/Ks, where Ks is the number of synonymous substitutions per synonymous site and Ka is the number of nonsynonymous substitutions per nonsynonymous site) for protein conservation estimates, and other information for each candidate gene. Using SearchDOGS Bacteria, we identified 155 gene candidates in the Shigella boydii sb227 genome, including 56 candidates of length < 60 codons. SearchDOGS Bacteria has two major advantages over currently available annotation software. First, it outperforms current methods in terms of sensitivity and is highly effective at identifying small or highly diverged genes. Second, as a freely downloadable package, it can be used with unpublished or confidential data.
Assuntos
Bases de Dados Genéticas , Genoma Bacteriano , Software , Sequência de Bases , Genômica , Homologia de Sequência do Ácido Nucleico , Shigella boydii/genética , SinteniaRESUMO
We investigate yeast sex chromosome evolution by comparing genome sequences from 16 species in the family Saccharomycetaceae, including data from genera Tetrapisispora, Kazachstania, Naumovozyma, and Torulaspora. We show that although most yeast species contain a mating-type (MAT) locus and silent HML and HMR loci structurally analogous to those of Saccharomyces cerevisiae, their detailed organization is highly variable and indicates that the MAT locus is a deletion hotspot. Over evolutionary time, chromosomal genes located immediately beside MAT have continually been deleted, truncated, or transposed to other places in the genome in a process that is gradually shortening the distance between MAT and HML. Each time a gene beside MAT is removed by deletion or transposition, the next gene on the chromosome is brought into proximity with MAT and is in turn put at risk for removal. This process has also continually replaced the triplicated sequence regions, called Z and X, that allow HML and HMR to be used as templates for DNA repair at MAT during mating-type switching. We propose that the deletion and transposition events are caused by evolutionary accidents during mating-type switching, combined with natural selection to keep MAT and HML on the same chromosome. The rate of deletion accelerated greatly after whole-genome duplication, probably because genes were redundant and could be deleted without requiring transposition. We suggest that, despite its mutational cost, switching confers an evolutionary benefit by providing a way for an isolated germinating spore to reform spores if the environment is too poor.
Assuntos
Evolução Molecular , Genes Fúngicos Tipo Acasalamento/genética , Genes de Troca/genética , Saccharomyces cerevisiae/genética , Cromossomos Sexuais/genética , Cromossomos Fúngicos/genética , Sequência Conservada , Elementos de DNA Transponíveis/genética , DNA Fúngico/genética , Ligação Genética , Loci Gênicos/genética , Dados de Sequência Molecular , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Deleção de Sequência/genéticaRESUMO
High-throughput sequencing plays a pivotal role in hematological malignancy diagnostics, but interpreting missense mutations remains challenging. In this study, we used the newly available AlphaMissense database to assess the efficacy of machine learning to predict missense mutation effects and its impact to improve our ability to interpret them. Based on the analysis of 2073 variants from 686 patients analyzed for clinical purpose, we confirmed the very high accuracy of AlphaMissense predictions in a large real-life data set of missense mutations (AUC of ROC curve 0.95), and provided a comprehensive analysis of the discrepancies between AlphaMissense predictions and state of the art clinical interpretation.
Assuntos
Biologia Computacional , Neoplasias Hematológicas , Humanos , Mutação de Sentido Incorreto , Aprendizado de Máquina , Curva ROC , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/genéticaRESUMO
BACKGROUND: Yeasts are a model system for exploring eukaryotic genome evolution. Next-generation sequencing technologies are poised to vastly increase the number of yeast genome sequences, both from resequencing projects (population studies) and from de novo sequencing projects (new species). However, the annotation of genomes presents a major bottleneck for de novo projects, because it still relies on a process that is largely manual. RESULTS: Here we present the Yeast Genome Annotation Pipeline (YGAP), an automated system designed specifically for new yeast genome sequences lacking transcriptome data. YGAP does automatic de novo annotation, exploiting homology and synteny information from other yeast species stored in the Yeast Gene Order Browser (YGOB) database. The basic premises underlying YGAP's approach are that data from other species already tells us what genes we should expect to find in any particular genomic region and that we should also expect that orthologous genes are likely to have similar intron/exon structures. Additionally, it is able to detect probable frameshift sequencing errors and can propose corrections for them. YGAP searches intelligently for introns, and detects tRNA genes and Ty-like elements. CONCLUSIONS: In tests on Saccharomyces cerevisiae and on the genomes of Naumovozyma castellii and Tetrapisispora blattae newly sequenced with Roche-454 technology, YGAP outperformed another popular annotation program (AUGUSTUS). For S. cerevisiae and N. castellii, 91-93% of YGAP's predicted gene structures were identical to those in previous manually curated gene sets. YGAP has been implemented as a webserver with a user-friendly interface at http://wolfe.gen.tcd.ie/annotation.
Assuntos
Sequência Conservada , Genoma Fúngico/genética , Genômica/métodos , Anotação de Sequência Molecular/métodos , Software , Sintenia/genética , Leveduras/genética , Sequência de Bases , Ordem dos Genes , Saccharomyces cerevisiae/genéticaRESUMO
Gerromorpha, also known as semi-aquatic bugs, present the striking capability to walk on water surface, which has long attracted the interest of many scientists. Yet our understanding of the mechanisms associated with their adaptation and diversification within this new habitat remain largely unknown. In this review we discuss how new transcriptomic and genomic resources have contributed to establish the Gerromorpha as an important lineage to study phenotypic evolution. In particular we outline the impact of recent comparative transcriptomic analyses and first published genomes to advance our understanding of genomic basis of adaptations to water surface locomotion and sexual dimorphism.
Assuntos
Heterópteros , Animais , Ecossistema , Genoma , Genômica , Heterópteros/genética , ÁguaRESUMO
BACKGROUND: In standard BLAST searches, no information other than the sequences of the query and the database entries is considered. However, in situations where two genes from different species have only borderline similarity in a BLAST search, the discovery that the genes are located within a region of conserved gene order (synteny) can provide additional evidence that they are orthologs. Thus, for interpreting borderline search results, it would be useful to know whether the syntenic context of a database hit is similar to that of the query. This principle has often been used in investigations of particular genes or genomic regions, but to our knowledge it has never been implemented systematically. RESULTS: We made use of the synteny information contained in the Yeast Gene Order Browser database for 11 yeast species to carry out a systematic search for protein-coding genes that were overlooked in the original annotations of one or more yeast genomes but which are syntenic with their orthologs. Such genes tend to have been overlooked because they are short, highly divergent, or contain introns. The key features of our software - called SearchDOGS - are that the database entries are classified into sets of genomic segments that are already known to be orthologous, and that very weak BLAST hits are retained for further analysis if their genomic location is similar to that of the query. Using SearchDOGS we identified 595 additional protein-coding genes among the 11 yeast species, including two new genes in Saccharomyces cerevisiae. We found additional genes for the mating pheromone a-factor in six species including Kluyveromyces lactis. CONCLUSIONS: SearchDOGS has proven highly successful for identifying overlooked genes in the yeast genomes. We anticipate that our approach can be adapted for study of further groups of species, such as bacterial genomes. More generally, the concept of doing sequence similarity searches against databases to which external information has been added may prove useful in other settings.
Assuntos
Bases de Dados Genéticas , Genes Fúngicos/genética , Genômica , Anotação de Sequência Molecular/métodos , Homologia de Sequência do Ácido Nucleico , Leveduras/genética , Feromônios/genética , SoftwareRESUMO
For more than 10,000 years, the selection of plant and animal traits that are better tailored for human use has shaped the development of civilizations. During this period, bread wheat (Triticum aestivum) emerged as one of the world's most important crops. We use exome sequencing of a worldwide panel of almost 500 genotypes selected from across the geographical range of the wheat species complex to explore how 10,000 years of hybridization, selection, adaptation and plant breeding has shaped the genetic makeup of modern bread wheats. We observe considerable genetic variation at the genic, chromosomal and subgenomic levels, and use this information to decipher the likely origins of modern day wheats, the consequences of range expansion and the allelic variants selected since its domestication. Our data support a reconciled model of wheat evolution and provide novel avenues for future breeding improvement.
Assuntos
Triticum/genética , Pão , Domesticação , Evolução Molecular , Variação Genética , Genoma de Planta , Modelos Genéticos , Filogenia , Melhoramento Vegetal , Sequenciamento do ExomaRESUMO
BACKGROUND: The Hemiptera (aphids, cicadas, and true bugs) are a key insect order, with high diversity for feeding ecology and excellent experimental tractability for molecular genetics. Building upon recent sequencing of hemipteran pests such as phloem-feeding aphids and blood-feeding bed bugs, we present the genome sequence and comparative analyses centered on the milkweed bug Oncopeltus fasciatus, a seed feeder of the family Lygaeidae. RESULTS: The 926-Mb Oncopeltus genome is well represented by the current assembly and official gene set. We use our genomic and RNA-seq data not only to characterize the protein-coding gene repertoire and perform isoform-specific RNAi, but also to elucidate patterns of molecular evolution and physiology. We find ongoing, lineage-specific expansion and diversification of repressive C2H2 zinc finger proteins. The discovery of intron gain and turnover specific to the Hemiptera also prompted the evaluation of lineage and genome size as predictors of gene structure evolution. Furthermore, we identify enzymatic gains and losses that correlate with feeding biology, particularly for reductions associated with derived, fluid nutrition feeding. CONCLUSIONS: With the milkweed bug, we now have a critical mass of sequenced species for a hemimetabolous insect order and close outgroup to the Holometabola, substantially improving the diversity of insect genomics. We thereby define commonalities among the Hemiptera and delve into how hemipteran genomes reflect distinct feeding ecologies. Given Oncopeltus's strength as an experimental model, these new sequence resources bolster the foundation for molecular research and highlight technical considerations for the analysis of medium-sized invertebrate genomes.