Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Lipid Res ; 56(3): 722-736, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25598080

RESUMO

The spectrum of nonalcoholic fatty liver disease (NAFLD) includes steatosis, nonalcoholic steatohepatitis (NASH), and cirrhosis. Recognition and timely diagnosis of these different stages, particularly NASH, is important for both potential reversibility and limitation of complications. Liver biopsy remains the clinical standard for definitive diagnosis. Diagnostic tools minimizing the need for invasive procedures or that add information to histologic data are important in novel management strategies for the growing epidemic of NAFLD. We describe an "omics" approach to detecting a reproducible signature of lipid metabolites, aqueous intracellular metabolites, SNPs, and mRNA transcripts in a double-blinded study of patients with different stages of NAFLD that involves profiling liver biopsies, plasma, and urine samples. Using linear discriminant analysis, a panel of 20 plasma metabolites that includes glycerophospholipids, sphingolipids, sterols, and various aqueous small molecular weight components involved in cellular metabolic pathways, can be used to differentiate between NASH and steatosis. This identification of differential biomolecular signatures has the potential to improve clinical diagnosis and facilitate therapeutic intervention of NAFLD.


Assuntos
Lipídeos/sangue , Lipídeos/urina , Hepatopatia Gordurosa não Alcoólica , Polimorfismo de Nucleotídeo Único , Adulto , Biomarcadores/metabolismo , Biomarcadores/urina , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/urina
2.
J Biol Chem ; 288(28): 20477-87, 2013 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-23723068

RESUMO

Phosphatidic acid (PA) is a lipid second messenger located at the intersection of several lipid metabolism and cell signaling events including membrane trafficking, survival, and proliferation. Generation of signaling PA has long been primarily attributed to the activation of phospholipase D (PLD). PLD catalyzes the hydrolysis of phosphatidylcholine into PA. A variety of both receptor-tyrosine kinase and G-protein-coupled receptor stimulations have been shown to lead to PLD activation and PA generation. This study focuses on profiling the PA pool upon P2Y6 receptor signaling manipulation to determine the major PA producing enzymes. Here we show that PLD, although highly active, is not responsible for the majority of stable PA being produced upon UDP stimulation of the P2Y6 receptor and that PA levels are tightly regulated. By following PA flux in the cell we show that PLD is involved in an initial increase in PA upon receptor stimulation; however, when PLD is blocked, the cell compensates by increasing PA production from other sources. We further delineate the P2Y6 signaling pathway showing that phospholipase Cß3 (PLCß3), PLCδ1, DGKζ and PLD are all downstream of receptor activation. We also show that DGKζ is a novel negative regulator of PLD activity in this system that occurs through an inhibitory mechanism with PKCα. These results further define the downstream events resulting in PA production in the P2Y6 receptor signaling pathway.


Assuntos
Ácidos Fosfatídicos/biossíntese , Fosfatidilcolinas/metabolismo , Fosfolipase D/metabolismo , Receptores Purinérgicos P2/metabolismo , 1-Butanol/farmacologia , Western Blotting , Linhagem Celular Tumoral , Diacilglicerol Quinase/genética , Diacilglicerol Quinase/metabolismo , Diglicerídeos/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Humanos , Hidrólise , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Espectrometria de Massas , Modelos Biológicos , Fosfolipase C delta/genética , Fosfolipase C delta/metabolismo , Fosfolipase D/antagonistas & inibidores , Fosfolipase D/genética , Proteína Quinase C-alfa/genética , Proteína Quinase C-alfa/metabolismo , Interferência de RNA , Receptores Purinérgicos P2/genética , Transdução de Sinais/efeitos dos fármacos , Difosfato de Uridina/farmacologia
3.
J Lipid Res ; 54(3): 859-868, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23307946

RESUMO

Monitoring lipid distribution and metabolism in cells and biological fluids poses many challenges because of the many molecular species and metabolic pathways that exist. This study describes the synthesis and study of molecules that contain an alkyne functional group as surrogates for natural lipids in cultured cells. Thus, hexadec-15-ynoic and hexadec-7-ynoic acids were readily incorporated into RAW 264.7 cells, principally as phosphocholine esters; the alkyne was used as a "tag" that could be transformed to a stable dicobalt-hexacarbonyl complex; and the complex could then be detected by HPLC/MS or HPLC/UV(349nm). The 349 nm absorbance of the cobalt complexes was used to provide qualitative and quantitative information about the distribution and cellular concentrations of the alkyne lipids. The alkyne group could also be used as an affinity tag for the lipids by a catch-and-release strategy on phosphine-coated silica beads. Lipid extracts were enriched in the tagged lipids in this way, making the approach of potential utility to study lipid transformations in cell culture. Both terminal alkynes and internal alkynes were used in this affinity "pull-down" strategy. This method facilitates measuring lipid species that might otherwise fall below limits of detection.


Assuntos
Alcinos/metabolismo , Cobalto/metabolismo , Animais , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Ácidos Graxos/metabolismo , Espectrometria de Massas , Camundongos
4.
Nat Chem Biol ; 6(3): 205-207, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20098428

RESUMO

Alkyne-modified phospholipids can be unambiguously identified and differentiated from native species in complex mixtures by formation of dicobalthexacarbonyl complexes. This reaction is specific for alkynes and is unaffected by other glycerophospholipid-related moieties. Enrichment of cells with alkyne-derivatized fatty acids or glycerophospholipids followed by solid-phase sequestration and release is a promising new method for unequivocally monitoring individual glycerophospholipids following incorporation into cells. This technique also facilitates lipidomic analysis of substrates and products.

5.
Nat Chem Biol ; 5(2): 108-17, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19136975

RESUMO

Phospholipase D (PLD) is an essential enzyme responsible for the production of the lipid second messenger phosphatidic acid. Phosphatidic acid participates in both G protein-coupled receptor and receptor tyrosine kinase signal transduction networks. The lack of potent and isoform-selective inhibitors has limited progress in defining the cellular roles of PLD. We used a diversity-oriented synthetic approach and developed a library of PLD inhibitors with considerable pharmacological characterization. Here we report the rigorous evaluation of that library, which contains highly potent inhibitors, including the first isoform-selective PLD inhibitors. Specific members of this series inhibit isoforms with >100-fold selectivity both in vitro and in cells. A subset of inhibitors was shown to block invasiveness in metastatic breast cancer models. These findings demonstrate the power of diversity-oriented synthesis combined with biochemical assays and mass spectrometric lipid profiling of cellular responses to develop the first isoform-selective PLD inhibitors--a new class of antimetastatic agents.


Assuntos
Inibidores Enzimáticos/farmacologia , Isoenzimas/farmacologia , Invasividade Neoplásica/prevenção & controle , Fosfolipase D/antagonistas & inibidores , Neoplasias da Mama/patologia , Desenho de Fármacos , Humanos
6.
Bioorg Med Chem Lett ; 19(8): 2240-3, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19299128

RESUMO

This Letter describes the synthesis and structure-activity relationships (SAR) of isoform-selective PLD inhibitors. By virtue of the installation of a 1,3,8-triazaspiro[4,5]decan-4-one privileged structure, PLD inhibitors with nanomolar potency and an unprecedented 40-fold selectivity for PLD2 over PLD1 were developed. Interestingly, SAR for this diverged from our earlier efforts, and dual PLD1/2 inhibitors were also discovered within this series.


Assuntos
Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Fosfolipase D/antagonistas & inibidores , Relação Dose-Resposta a Droga , Desenho de Fármacos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Fosfolipase D/metabolismo , Relação Estrutura-Atividade
7.
8.
Biochemistry ; 47(36): 9372-9, 2008 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-18702510

RESUMO

Lipid species changes for SV40-transformed fibroblasts from wild-type or from diacylglycerol kinase-epsilon (DGKepsilon) or diacylglycerol kinase-alpha (DGKalpha) knockout mice were determined for glycerophospholipids, polyphosphatidylinositides (GPInsP n ) and diacylglycerol (DAG) using direct infusion mass spectrometry. Dramatic differences in arachidonate (20:4 fatty acid)-containing lipids were observed for multiple classes of glycerophospholipids and polyphosphatidylinositides between wild-type and DGKepsilon knockout cells. However, no difference was observed in either the amount or the acyl chain composition of DAG between DGKepsilon knockout and wild-type cells, suggesting that DGKepsilon catalyzed the phosphorylation of a minor fraction of the DAG in these cells. The differences in arachidonate content between the two cell lines were greatest for the GPInsP n lipids and lowest for DAG. These findings indicate that DGKepsilon plays a significant role in determining the enrichment of GPInsP n with 20:4 and that there is a pathway for the selective translocation of arachidonoyl phosphatidic acid from the plasma membrane to the endoplasmic reticulum. In contrast, no substantial difference was observed in the acyl chain composition of any class of glycerophospholipid or diacylglycerol between lipid extracts from fibroblasts from wild-type mice or from DGKalpha knockout mice. However, the cells from the DGKalpha knockout mice had a higher concentration of DAG, consistent with the lack of downregulation of the major fraction of DAG by DGKalpha, in contrast with DGKepsilon that is primarily responsible for enrichment of GPInsP n with arachidonoyl acyl chains.


Assuntos
Diacilglicerol Quinase/metabolismo , Retículo Endoplasmático/metabolismo , Fibroblastos/enzimologia , Lipídeos de Membrana/metabolismo , Animais , Transporte Biológico/genética , Linhagem Celular Transformada , Transformação Celular Viral , Diacilglicerol Quinase/genética , Retículo Endoplasmático/genética , Fibroblastos/virologia , Isoenzimas/genética , Isoenzimas/metabolismo , Lipídeos de Membrana/genética , Camundongos , Camundongos Knockout , Fosforilação , Vírus 40 dos Símios/genética , Vírus 40 dos Símios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA