Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell ; 82(9): 1708-1723.e10, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35320755

RESUMO

7SK is a conserved noncoding RNA that regulates transcription by sequestering the transcription factor P-TEFb. 7SK function entails complex changes in RNA structure, but characterizing RNA dynamics in cells remains an unsolved challenge. We developed a single-molecule chemical probing strategy, DANCE-MaP (deconvolution and annotation of ribonucleic conformational ensembles), that defines per-nucleotide reactivity, direct base pairing interactions, tertiary interactions, and thermodynamic populations for each state in RNA structural ensembles from a single experiment. DANCE-MaP reveals that 7SK RNA encodes a large-scale structural switch that couples dissolution of the P-TEFb binding site to structural remodeling at distal release factor binding sites. The 7SK structural equilibrium shifts in response to cell growth and stress and can be targeted to modulate expression of P-TEFbresponsive genes. Our study reveals that RNA structural dynamics underlie 7SK function as an integrator of diverse cellular signals to control transcription and establishes the power of DANCE-MaP to define RNA dynamics in cells.


Assuntos
Fator B de Elongação Transcricional Positiva , Proteínas de Ligação a RNA , Sítios de Ligação/genética , Células HeLa , Humanos , Fator B de Elongação Transcricional Positiva/genética , RNA Nuclear Pequeno/genética , RNA não Traduzido , Proteínas de Ligação a RNA/genética
2.
Biochemistry ; 61(15): 1625-1632, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35802500

RESUMO

Structured RNAs bind ligands and are attractive targets for small-molecule drugs. A wide variety of analytical methods have been used to characterize RNA-ligand interactions, but our experience is that most have significant limitations in terms of material requirements and applicability to complex RNAs. Surface plasmon resonance (SPR) potentially overcomes these limitations, but we find that the standard experimental framework measures notable nonspecific electrostatic-mediated interactions, frustrating analysis of weak RNA binders. SPR measurements are typically quantified relative to a non-target reference channel. Here, we show that referencing to a channel containing a non-binding control RNA enables subtraction of nonspecific binding contributions, allowing measurements of accurate and specific binding affinities. We validated this approach for small-molecule binders of two riboswitch RNAs with affinities ranging from nanomolar to millimolar, including low-molecular-mass fragment ligands. SPR implemented with reference subtraction reliably discriminates specific from nonspecific binding, uses RNA and ligand material efficiently, and enables rapid exploration of the ligand-binding landscape for RNA targets.


Assuntos
RNA , Ressonância de Plasmônio de Superfície , Ligantes , Ressonância de Plasmônio de Superfície/métodos
3.
J Org Chem ; 83(12): 6541-6555, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29751727

RESUMO

The piperazine heterocycle is broadly exploited in FDA-approved drugs and biologically active compounds, but its chemical diversity is usually limited to ring nitrogen substitutions, leaving the four carbon atoms underutilized. Using an efficient four-step synthesis, chiral amino acids were transformed into 6-substituted piperazine-2-acetic acid esters as diastereomeric mixtures whose cis and trans products could be chromatographically separated. From six amino acids (both antipodes), a complete matrix of 24 monoprotected chiral 2,6-disubstituted piperazines was obtained, each as a single absolute stereoisomer in multigram quantities. These diverse and versatile piperazines can be functionalized on either nitrogen atom, allowing them to be used as scaffolds for parallel library synthesis or intermediates for the production of novel piperazine compounds.

5.
Curr Opin Struct Biol ; 88: 102877, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39024941

RESUMO

RNA molecules fold to form complex internal structures. Many of these RNA structures populate ensembles with rheostat-like properties, with each state having a distinct function. Until recently, analysis of RNA structures, especially within cells, was limited to modeling either a single averaged structure or computationally-modeled ensembles. These approaches obscure the intrinsic heterogeneity of many structured RNAs. Single-molecule correlated chemical probing (smCCP) strategies are now making it possible to measure and deconvolute RNA structure ensembles based on efficiently executed chemical probing experiments. Here, we provide an overview of fundamental single-molecule probing principles, review current ensemble deconvolution strategies, and discuss recent applications to diverse biological systems. smCCP is enabling a revolution in understanding how the plasticity of RNA structure is exploited in biological systems to respond to stimuli and alter gene function. The energetics of RNA ensembles are often subtle and a subset can likely be targeted to modulate disease-associated biological processes.


Assuntos
Conformação de Ácido Nucleico , RNA , RNA/química , RNA/metabolismo , Imagem Individual de Molécula/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA