RESUMO
Stable tris(trichlorophenyl)methyl radicals have gained interest as all-organic bioimaging agents combining fluorescent and paramagnetic properties. However, cellular uptake has so far only been reported for nanoparticles, because molecular hydrophobic trityl radicals are not soluble in aqueous media. Here, we report the synthesis and characterization of new water-soluble tris(trichlorophenyl)methyl radical derivatives exhibiting red doublet emission. Solubility in water is achieved through functionalization with oligoethylene glycol (OEG) chains. The emission behavior of OEG functionalized trityl radicals is studied in polar environments. Donor-functionalization with carbazole evokes a charge-transfer excited state that is efficiently quenched in polar solvents. In contrast, click-reaction mediated attachment of OEG-azide and trityl acetylene furnishes a triazole functionalized radical with locally excited states and emission in water. Confocal fluorescence microscopy proves successful uptake of the material by macrophages in cell culture, showing the potential of our water soluble trityl radical for fluorescence bioimaging.
RESUMO
Conjugated molecules with multiple radical centers such as the iconic Chichibabin diradicaloid hold promise as building blocks in materials for quantum sensing and quantum information processing. However, it is a considerable challenge to design simple analogues of the Chichibabin hydrocarbon that are chemically inert, exhibit high diradical character and emit light at a distinct wavelength that may offer an optical readout of the spin state in functional ensembles. Here we describe the serendipitous discovery of the stable TTM-TTM diradicaloid, which exhibits high diradical character, a striking sky-blue color and near-infrared (NIR) emission (in solution). This combination of properties is unique among related diradicaloids and is due to the presence of hydrogen and chlorine atoms in "just the right positions", allowing a perfectly planar, yet predominantly benzenoid bridge to connect the two sterically stabilized radical centers. In-depth studies of the optical and magnetic properties suggest that this structural motif could become a mainstay building block of organic spin materials.