Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Bacteriol ; 205(1): e0039622, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36533911

RESUMO

Borrelia burgdorferi, the spirochete agent of Lyme disease, has evolved within a consistent infectious cycle between tick and vertebrate hosts. The transmission of the pathogen from tick to vertebrate is characterized by rapid replication and a change in the outer surface protein profile. EbfC, a highly conserved nucleoid-associated protein, binds throughout the borrelial genome, affecting expression of many genes, including the Erp outer surface proteins. In B. burgdorferi, like many other bacterial species, ebfC is cotranscribed with dnaX, an essential component of the DNA polymerase III holoenzyme, which facilitates chromosomal replication. The expression of the dnaX-ebfC operon is tied to the spirochete's replication rate, but the underlying mechanism for this connection was unknown. In this work, we provide evidence that the expression of dnaX-ebfC is controlled by direct interactions of DnaA, the chromosomal replication initiator, and EbfC at the unusually long dnaX-ebfC 5' untranslated region (UTR). Both proteins bind to the 5' UTR DNA, with EbfC also binding to the RNA. The DNA binding of DnaA to this region was similarly impacted by ATP and ADP. In vitro studies characterized DnaA as an activator of dnaX-ebfC and EbfC as an antiactivator. We further found evidence that DnaA may regulate other genes essential for replication. IMPORTANCE The dual life cycle of Borrelia burgdorferi, the causative agent of Lyme disease, is characterized by periods of rapid and slowed replication. The expression patterns of many of the spirochete's virulence factors are impacted by these changes in replication rates. The connection between replication and virulence can be understood at the dnaX-ebfC operon. DnaX is an essential component of the DNA polymerase III holoenzyme, which replicates the chromosome. EbfC is a nucleoid-associated protein that regulates the infection-associated outer surface Erp proteins, as well as other transcripts. The expression of dnaX-ebfC is tied to replication rate, which we demonstrate is mediated by DnaA, the master chromosomal initiator protein and transcription factor, and EbfC.


Assuntos
Borrelia burgdorferi , Doença de Lyme , Carrapatos , Animais , Borrelia burgdorferi/genética , Borrelia burgdorferi/metabolismo , Proteínas de Bactérias/metabolismo , DNA Polimerase III/genética , Doença de Lyme/microbiologia , Óperon , Carrapatos/microbiologia , Proteínas de Membrana/metabolismo , Regulação Bacteriana da Expressão Gênica
2.
Mol Microbiol ; 112(3): 973-991, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31240776

RESUMO

When the Lyme disease spirochete, Borrelia burgdorferi, transfers from a feeding tick into a human or other vertebrate host, the bacterium produces vertebrate-specific proteins and represses factors needed for arthropod colonization. Previous studies determined that the B. burgdorferi BpuR protein binds to its own mRNA and autoregulates its translation, and also serves as co-repressor of erp transcription. Here, we demonstrate that B. burgdorferi controls transcription of bpuR, expressing high levels of bpuR during tick colonization but significantly less during mammalian infection. The master regulator of chromosomal replication, DnaA, was found to bind specifically to a DNA sequence that overlaps the bpuR promoter. Cultured B. burgdorferi that were genetically manipulated to produce elevated levels of BpuR exhibited altered levels of several proteins, although BpuR did not impact mRNA levels. Among these was the SodA superoxide dismutase, which is essential for mammalian infection. BpuR bound to sodA mRNA in live B. burgdorferi, and a specific BpuR-binding site was mapped 5' of the sodA open reading frame. Recognition of posttranscriptional regulation of protein levels by BpuR adds another layer to our understanding of the B. burgdorferi regulome, and provides further evidence that bacterial protein levels do not always correlate directly with mRNA levels.


Assuntos
Proteínas de Bactérias/metabolismo , Borrelia burgdorferi/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Doença de Lyme/microbiologia , Proteínas de Ligação a RNA/metabolismo , Superóxido Dismutase/metabolismo , Carrapatos/microbiologia , Animais , Proteínas de Bactérias/genética , Borrelia burgdorferi/genética , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C3H , Regiões Promotoras Genéticas , Proteínas de Ligação a RNA/genética , Superóxido Dismutase/genética
3.
J Bacteriol ; 200(24)2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30249703

RESUMO

Prokaryote restriction modification (RM) systems serve to protect bacteria from potentially detrimental foreign DNA. Recent evidence suggests that DNA methylation by the methyltransferase (MTase) components of RM systems can also have effects on transcriptome profiles. The type strain of the causative agent of Lyme disease, Borrelia burgdorferi B31, possesses two RM systems with N6-methyladenosine (m6A) MTase activity, which are encoded by the bbe02 gene located on linear plasmid lp25 and bbq67 on lp56. The specific recognition and/or methylation sequences had not been identified for either of these B. burgdorferi MTases, and it was not previously known whether these RM systems influence transcript levels. In the current study, single-molecule real-time sequencing was utilized to map genome-wide m6A sites and to identify consensus modified motifs in wild-type B. burgdorferi as well as MTase mutants lacking either the bbe02 gene alone or both bbe02 and bbq67 genes. Four novel conserved m6A motifs were identified and were fully attributable to the presence of specific MTases. Whole-genome transcriptome changes were observed in conjunction with the loss of MTase enzymes, indicating that DNA methylation by the RM systems has effects on gene expression. Genes with altered transcription in MTase mutants include those involved in vertebrate host colonization (e.g., rpoS regulon) and acquisition by/transmission from the tick vector (e.g., rrp1 and pdeB). The results of this study provide a comprehensive view of the DNA methylation pattern in B. burgdorferi, and the accompanying gene expression profiles add to the emerging body of research on RM systems and gene regulation in bacteria.IMPORTANCE Lyme disease is the most prevalent vector-borne disease in North America and is classified by the Centers for Disease Control and Prevention (CDC) as an emerging infectious disease with an expanding geographical area of occurrence. Previous studies have shown that the causative bacterium, Borrelia burgdorferi, methylates its genome using restriction modification systems that enable the distinction from foreign DNA. Although much research has focused on the regulation of gene expression in B. burgdorferi, the effect of DNA methylation on gene regulation has not been evaluated. The current study characterizes the patterns of DNA methylation by restriction modification systems in B. burgdorferi and evaluates the resulting effects on gene regulation in this important pathogen.


Assuntos
Borrelia burgdorferi/genética , Metilação de DNA , Enzimas de Restrição-Modificação do DNA/metabolismo , Perfilação da Expressão Gênica/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Bacteriano/química , Regulação Bacteriana da Expressão Gênica , Análise de Sequência de RNA , Sequenciamento Completo do Genoma
4.
Infect Immun ; 83(4): 1347-53, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25605770

RESUMO

The Lyme disease spirochete, Borrelia burgdorferi, controls protein expression patterns during its tick-mammal infection cycle. Earlier studies demonstrated that B. burgdorferi synthesizes 4,5-dihydroxy-2,3-pentanedione (autoinducer-2 [AI-2]) and responds to AI-2 by measurably changing production of several infection-associated proteins. luxS mutants, which are unable to produce AI-2, exhibit altered production of several proteins. B. burgdorferi cannot utilize the other product of LuxS, homocysteine, indicating that phenotypes of luxS mutants are not due to the absence of that molecule. Although a previous study found that a luxS mutant was capable of infecting mice, a critical caveat to those results is that bacterial loads were not quantified. To more precisely determine whether LuxS serves a role in mammalian infection, mice were simultaneously inoculated with congenic wild-type and luxS strains, and bacterial numbers were assessed using quantitative PCR. The wild-type bacteria substantially outcompeted the mutants, suggesting that LuxS performs a significant function during mammalian infection. These data also provide further evidence that nonquantitative infection studies do not necessarily provide conclusive results and that regulatory factors may not make all-or-none, black-or-white contributions to infectivity.


Assuntos
Proteínas de Bactérias/genética , Borrelia burgdorferi/patogenicidade , Liases de Carbono-Enxofre/genética , Doença de Lyme/microbiologia , Fatores de Virulência/genética , Animais , Carga Bacteriana , Borrelia burgdorferi/genética , Modelos Animais de Doenças , Regulação Bacteriana da Expressão Gênica , Camundongos , Camundongos Endogâmicos BALB C , Pentanos/metabolismo
5.
PLoS One ; 13(8): e0203286, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30161198

RESUMO

Borrelia burgdorferi, the causative agent of Lyme disease, survives in nature through a cycle that alternates between ticks and vertebrates. To facilitate this defined lifestyle, B. burgdorferi has evolved a gene regulatory network that ensures transmission between those hosts, along with specific adaptations to niches within each host. Several regulatory proteins are known to be essential for the bacterium to complete these critical tasks, but interactions between regulators had not previously been investigated in detail, due to experimental uses of different strain backgrounds and growth conditions. To address that deficit in knowledge, the transcriptomic impacts of four critical regulatory proteins were examined in a uniform strain background. Pairs of mutants and their wild-type parent were grown simultaneously under a single, specific culture condition, permitting direct comparisons between the mutant strains. Transcriptomic analyses were strand-specific, and assayed both coding and noncoding RNAs. Intersection analyses identified regulatory overlaps between regulons, including transcripts involved in carbohydrate and polyamine metabolism. In addition, it was found that transcriptional units such as ospC and dbpBA, which were previously observed to be affected by alternative sigma factors, are transcribed by RNA polymerase using the housekeeping sigma factor, RpoD.


Assuntos
Proteínas de Bactérias/metabolismo , Borrelia burgdorferi/metabolismo , Transcriptoma , Proteínas de Bactérias/genética , Borrelia burgdorferi/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Mutação , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
6.
Metallomics ; 9(6): 757-772, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28540946

RESUMO

A number of bacterial pathogens require the ZnuABC Zinc (Zn2+) transporter and/or a second Zn2+ transport system to overcome Zn2+ sequestration by mammalian hosts. Previously we have shown that in addition to ZnuABC, Yersinia pestis possesses a second Zn2+ transporter that involves components of the yersiniabactin (Ybt), siderophore-dependent iron transport system. Synthesis of the Ybt siderophore and YbtX, a member of the major facilitator superfamily, are both critical components of the second Zn2+ transport system. Here we demonstrate that a ybtX znu double mutant is essentially avirulent in mouse models of bubonic and pneumonic plague while a ybtX mutant retains high virulence in both plague models. While sequestration of host Zn is a key nutritional immunity factor, excess Zn appears to have a significant antimicrobial role in controlling intracellular bacterial survival. Here, we demonstrate that ZntA, a Zn2+ exporter, plays a role in resistance to Zn toxicity in vitro, but that a zntA zur double mutant retains high virulence in both pneumonic and bubonic plague models and survival in macrophages. We also confirm that Ybt does not directly bind Zn2+in vitro under the conditions tested. However, we detect a significant increase in Zn2+-binding ability of filtered supernatants from a Ybt+ strain compared to those from a strain unable to produce the siderophore, supporting our previously published data that Ybt biosynthetic genes are involved in the production of a secreted Zn-binding molecule (zincophore). Our data suggest that Ybt or a modified Ybt participate in or promote Zn-binding activity in culture supernatants and is involved in Zn acquisition in Y. pestis.


Assuntos
Proteínas de Bactérias/metabolismo , Peste/patologia , Fatores de Virulência/metabolismo , Yersinia pestis/patogenicidade , Zinco/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Proteínas de Bactérias/genética , Células Cultivadas , Feminino , Regulação Bacteriana da Expressão Gênica , Macrófagos Peritoneais/microbiologia , Macrófagos Peritoneais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Peste/microbiologia , Virulência , Fatores de Virulência/genética
7.
Curr Protoc Microbiol ; 42: A.3D.1-A.3D.7, 2016 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-27517337

RESUMO

This protocol describes an efficient method for screening intact bacteria for the presence of desired DNA sequences using the polymerase chain reaction (PCR). This method is commonly referred to as colony PCR. © 2016 by John Wiley & Sons, Inc.


Assuntos
Bactérias/genética , Reação em Cadeia da Polimerase/métodos , Bactérias/classificação , Bactérias/isolamento & purificação , DNA Bacteriano/genética
8.
PLoS One ; 11(10): e0164165, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27706236

RESUMO

Borrelia burgdorferi, the agent of Lyme disease, differentially expresses numerous genes and proteins as it cycles between mammalian hosts and tick vectors. Insights on regulatory mechanisms have been provided by earlier studies that examined B. burgdorferi gene expression patterns during cultivation. However, prior studies examined bacteria at only a single time point of cultivation, providing only a snapshot of what is likely a dynamic transcriptional program driving B. burgdorferi adaptations to changes during culture growth phases. To address that concern, we performed RNA sequencing (RNA-Seq) analysis of B. burgdorferi cultures at early-exponential, mid-exponential, and early-stationary phases of growth. We found that expression of nearly 18% of annotated B. burgdorferi genes changed significantly during culture maturation. Moreover, genome-wide mapping of the B. burgdorferi transcriptome in different growth phases enabled insight on transcript boundaries, operon structures, and identified numerous putative non-coding RNAs. These RNA-Seq data are discussed and presented as a resource for the community of researchers seeking to better understand B. burgdorferi biology and pathogenesis.


Assuntos
Borrelia burgdorferi/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Borrelia burgdorferi/genética , Regulação Bacteriana da Expressão Gênica , MicroRNAs/genética , RNA Bacteriano/genética
9.
PLoS One ; 10(4): e0125440, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25906393

RESUMO

The second messenger nucleotide cyclic diadenylate monophosphate (c-di-AMP) has been identified in several species of Gram positive bacteria and Chlamydia trachomatis. This molecule has been associated with bacterial cell division, cell wall biosynthesis and phosphate metabolism, and with induction of type I interferon responses by host cells. We demonstrate that B. burgdorferi produces a c-di-AMP synthase, which we designated CdaA. Both CdaA and c-di-AMP levels are very low in cultured B. burgdorferi, and no conditions were identified under which cdaA mRNA was differentially expressed. A mutant B. burgdorferi was produced that expresses high levels of CdaA, yet steady state borrelial c-di-AMP levels did not change, apparently due to degradation by the native DhhP phosphodiesterase. The function(s) of c-di-AMP in the Lyme disease spirochete remains enigmatic.


Assuntos
Proteínas de Bactérias/metabolismo , Borrelia burgdorferi/enzimologia , AMP Cíclico/metabolismo , Proteínas de Bactérias/genética , Borrelia burgdorferi/metabolismo , Regulação Bacteriana da Expressão Gênica , Diester Fosfórico Hidrolases/metabolismo , Proteômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA