Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Immunol ; 23(4): 568-580, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35314846

RESUMO

Tumor-associated macrophages are composed of distinct populations arising from monocytes or tissue macrophages, with a poorly understood link to disease pathogenesis. Here, we demonstrate that mouse monocyte migration was supported by glutaminyl-peptide cyclotransferase-like (QPCTL), an intracellular enzyme that mediates N-terminal modification of several substrates, including the monocyte chemoattractants CCL2 and CCL7, protecting them from proteolytic inactivation. Knockout of Qpctl disrupted monocyte homeostasis, attenuated tumor growth and reshaped myeloid cell infiltration, with loss of monocyte-derived populations with immunosuppressive and pro-angiogenic profiles. Antibody targeting of the receptor CSF1R, which more broadly eliminates tumor-associated macrophages, reversed tumor growth inhibition in Qpctl-/- mice and prevented lymphocyte infiltration. Modulation of QPCTL synergized with anti-PD-L1 to expand CD8+ T cells and limit tumor growth. QPCTL inhibition constitutes an effective approach for myeloid cell-targeted cancer immunotherapy.


Assuntos
Aminoaciltransferases , Linfócitos T CD8-Positivos , Quimiocinas , Neoplasias , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Animais , Linfócitos T CD8-Positivos/patologia , Quimiocinas/metabolismo , Imunoterapia , Infiltração Leucêmica , Camundongos , Camundongos Knockout , Monócitos , Neoplasias/imunologia
2.
Nat Chem Biol ; 19(1): 55-63, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36577875

RESUMO

Engineered destruction of target proteins by recruitment to the cell's degradation machinery has emerged as a promising strategy in drug discovery. The majority of molecules that facilitate targeted degradation do so via a select number of ubiquitin ligases, restricting this therapeutic approach to tissue types that express the requisite ligase. Here, we describe a new strategy of targeted protein degradation through direct substrate recruitment to the 26S proteasome. The proteolytic complex is essential and abundantly expressed in all cells; however, proteasomal ligands remain scarce. We identify potent peptidic macrocycles that bind directly to the 26S proteasome subunit PSMD2, with a 2.5-Å-resolution cryo-electron microscopy complex structure revealing a binding site near the 26S pore. Conjugation of this macrocycle to a potent BRD4 ligand enabled generation of chimeric molecules that effectively degrade BRD4 in cells, thus demonstrating that degradation via direct proteasomal recruitment is a viable strategy for targeted protein degradation.


Assuntos
Proteínas Nucleares , Fatores de Transcrição , Proteínas Nucleares/metabolismo , Microscopia Crioeletrônica , Fatores de Transcrição/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ligases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
3.
Cell ; 140(4): 567-78, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20178748

RESUMO

The molecular mechanisms regulating the ubiquitin proteasome system (UPS) at synapses are poorly understood. We report that CaMKIIalpha-an abundant postsynaptic protein kinase-mediates the activity-dependent recruitment of proteasomes to dendritic spines in hippocampal neurons. CaMKIIalpha is biochemically associated with proteasomes in the brain. CaMKIIalpha translocation to synapses is required for activity-induced proteasome accumulation in spines, and is sufficient to redistribute proteasomes to postsynaptic sites. CaMKIIalpha autophosphorylation enhances its binding to proteasomes and promotes proteasome recruitment to spines. In addition to this structural role, CaMKIIalpha stimulates proteasome activity by phosphorylating proteasome subunit Rpt6 on Serine 120. However, CaMKIIalpha translocation, but not its kinase activity, is required for activity-dependent degradation of polyubiquitinated proteins in spines. Our findings reveal a scaffolding role of postsynaptic CaMKIIalpha in activity-dependent proteasome redistribution, which is commensurate with the great abundance of CaMKIIalpha in synapses.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Espinhas Dendríticas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Encéfalo/citologia , Hipocampo/citologia , Neurônios/citologia , Fosforilação , Transporte Proteico , Ratos , Sinapses
4.
J Proteome Res ; 19(4): 1533-1547, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32159963

RESUMO

Acquisition of drug resistance remains a chief impediment to successful cancer therapy, and we previously described a transient drug-tolerant cancer cell population (DTPs) whose survival is in part dependent on the activities of the histone methyltransferases G9a/EHMT2 and EZH2, the latter being the catalytic component of the polycomb repressive complex 2 (PRC2). Here, we apply multiple proteomic techniques to better understand the role of these histone methyltransferases (HMTs) in the establishment of the DTP state. Proteome-wide comparisons of lysine methylation patterns reveal that DTPs display an increase in methylation on K116 of PRC member Jarid2, an event that helps stabilize and recruit PRC2 to chromatin. We also find that EZH2, in addition to methylating histone H3K27, also can methylate G9a at K185, and that methylated G9a better recruits repressive complexes to chromatin. These complexes are similar to complexes recruited by histone H3 methylated at K9. Finally, a detailed histone post-translational modification (PTM) analysis shows that EZH2, either directly or through its ability to methylate G9a, alters H3K9 methylation in the context of H3 serine 10 phosphorylation, primarily in a cancer cell subpopulation that serves as DTP precursors. We also show that combinations of histone PTMs recruit a different set of complexes to chromatin, shedding light on the temporal mechanisms that contribute to drug tolerance.


Assuntos
Neoplasias , Proteômica , Tolerância a Medicamentos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Histonas/metabolismo , Metilação , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo
5.
Mol Cell Proteomics ; 16(1): 39-56, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27834733

RESUMO

Glioblastoma multiformes (GBMs) are high-grade astrocytomas and the most common brain malignancies. Primary GBMs are often associated with disturbed RAS signaling, and expression of oncogenic HRAS results in a malignant phenotype in glioma cell lines. Secondary GBMs arise from lower-grade astrocytomas, have slower progression than primary tumors, and contain IDH1 mutations in over 70% of cases. Despite significant amount of accumulating genomic and transcriptomic data, the fundamental mechanistic differences of gliomagenesis in these two types of high-grade astrocytoma remain poorly understood. Only a few studies have attempted to investigate the proteome, phosphorylation signaling, and epigenetic regulation in astrocytoma. In the present study, we applied quantitative phosphoproteomics to identify the main signaling differences between oncogenic HRAS and mutant IDH1-driven glioma cells as models of primary and secondary GBM, respectively. Our analysis confirms the driving roles of the MAPK and PI3K/mTOR signaling pathways in HRAS driven cells and additionally uncovers dysregulation of other signaling pathways. Although a subset of the signaling changes mediated by HRAS could be reversed by a MEK inhibitor, dual inhibition of MEK and PI3K resulted in more complete reversal of the phosphorylation patterns produced by HRAS expression. In contrast, cells expressing mutant IDH1 did not show significant activation of MAPK or PI3K/mTOR pathways. Instead, global downregulation of protein expression was observed. Targeted proteomic analysis of histone modifications identified significant histone methylation, acetylation, and butyrylation changes in the mutant IDH1 expressing cells, consistent with a global transcriptional repressive state. Our findings offer novel mechanistic insight linking mutant IDH1 associated inhibition of histone demethylases with specific histone modification changes to produce global transcriptional repression in secondary glioblastoma. Our proteomic datasets are available for download and provide a comprehensive catalogue of alterations in protein abundance, phosphorylation, and histone modifications in oncogenic HRAS and IDH1 driven astrocytoma cells beyond the transcriptomic level.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Isocitrato Desidrogenase/genética , Fosfoproteínas/análise , Proteômica/métodos , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Glioblastoma/genética , Glioblastoma/metabolismo , Código das Histonas , Histonas/metabolismo , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Mapas de Interação de Proteínas , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
6.
Nat Chem Biol ; 12(7): 531-8, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27214401

RESUMO

The KDM5 family of histone demethylases catalyzes the demethylation of histone H3 on lysine 4 (H3K4) and is required for the survival of drug-tolerant persister cancer cells (DTPs). Here we report the discovery and characterization of the specific KDM5 inhibitor CPI-455. The crystal structure of KDM5A revealed the mechanism of inhibition of CPI-455 as well as the topological arrangements of protein domains that influence substrate binding. CPI-455 mediated KDM5 inhibition, elevated global levels of H3K4 trimethylation (H3K4me3) and decreased the number of DTPs in multiple cancer cell line models treated with standard chemotherapy or targeted agents. These findings show that pretreatment of cancer cells with a KDM5-specific inhibitor results in the ablation of a subpopulation of cancer cells that can serve as the founders for therapeutic relapse.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Proteína 2 de Ligação ao Retinoblastoma/antagonistas & inibidores , Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Proteína 2 de Ligação ao Retinoblastoma/metabolismo , Relação Estrutura-Atividade
7.
Nature ; 490(7421): 539-42, 2012 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-22885697

RESUMO

NLRC4 is a cytosolic member of the NOD-like receptor family that is expressed in innate immune cells. It senses indirectly bacterial flagellin and type III secretion systems, and responds by assembling an inflammasome complex that promotes caspase-1 activation and pyroptosis. Here we use knock-in mice expressing NLRC4 with a carboxy-terminal 3×Flag tag to identify phosphorylation of NLRC4 on a single, evolutionarily conserved residue, Ser 533, following infection of macrophages with Salmonella enterica serovar Typhimurium (also known as Salmonella typhimurium). Western blotting with a NLRC4 phospho-Ser 533 antibody confirmed that this post-translational modification occurs only in the presence of stimuli known to engage NLRC4 and not the related protein NLRP3 or AIM2. Nlrc4(-/-) macrophages reconstituted with NLRC4 mutant S533A, unlike those reconstituted with wild-type NLRC4, did not activate caspase-1 and pyroptosis in response to S. typhimurium, indicating that S533 phosphorylation is critical for NLRC4 inflammasome function. Conversely, phosphomimetic NLRC4 S533D caused rapid macrophage pyroptosis without infection. Biochemical purification of the NLRC4-phosphorylating activity and a screen of kinase inhibitors identified PRKCD (PKCδ) as a candidate NLRC4 kinase. Recombinant PKCδ phosphorylated NLRC4 S533 in vitro, immunodepletion of PKCδ from macrophage lysates blocked NLRC4 S533 phosphorylation in vitro, and Prkcd(-/-) macrophages exhibited greatly attenuated caspase-1 activation and IL-1ß secretion specifically in response to S. typhimurium. Phosphorylation-defective NLRC4 S533A failed to recruit procaspase-1 and did not assemble inflammasome specks during S. typhimurium infection, so phosphorylation of NLRC4 S533 probably drives conformational changes necessary for NLRC4 inflammasome activity and host innate immunity.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Inflamassomos/metabolismo , Sequência de Aminoácidos , Animais , Proteínas Adaptadoras de Sinalização CARD/química , Proteínas Adaptadoras de Sinalização CARD/deficiência , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/deficiência , Proteínas de Ligação ao Cálcio/genética , Caspase 1/metabolismo , Ativação Enzimática , Técnicas de Introdução de Genes , Humanos , Imunidade Inata/imunologia , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Macrófagos/imunologia , Camundongos , Dados de Sequência Molecular , Fosforilação , Conformação Proteica , Proteína Quinase C-delta/deficiência , Proteína Quinase C-delta/genética , Proteína Quinase C-delta/metabolismo , Salmonella typhimurium/imunologia , Alinhamento de Sequência
8.
Mol Cell ; 40(4): 548-57, 2010 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-21095585

RESUMO

Inactivating mutations in the ubiquitin (Ub) editing protein A20 promote persistent nuclear factor (NF)-κB signaling and are genetically linked to inflammatory diseases and hematologic cancers. A20 tightly regulates NF-κB signaling by acting as an Ub editor, removing K63-linked Ub chains and mediating addition of Ub chains that target substrates for degradation. However, a precise molecular understanding of how A20 modulates this pathway remains elusive. Here, using structural analysis, domain mapping, and functional assays, we show that A20 zinc finger 4 (ZnF4) does not directly interact with E2 enzymes but instead can bind mono-Ub and K63-linked poly-Ub. Mutations to the A20 ZnF4 Ub-binding surface result in decreased A20-mediated ubiquitination and impaired regulation of NF-κB signaling. Collectively, our studies illuminate the mechanistically distinct but biologically interdependent activities of the A20 ZnF and ovarian tumor (OTU) domains that are inherent to the Ub editing process and, ultimately, to regulation of NF-κB signaling.


Assuntos
NF-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Ubiquitina/metabolismo , Dedos de Zinco , Sítios de Ligação , Cristalografia por Raios X , Lisina/metabolismo , Modelos Moleculares , Mutação/genética , Proteínas Nucleares/química , Poliubiquitina/metabolismo , Ligação Proteica , Especificidade por Substrato , Enzimas de Conjugação de Ubiquitina/metabolismo
9.
EMBO J ; 32(8): 1103-14, 2013 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-23524849

RESUMO

The cellular inhibitor of apoptosis (c-IAP) proteins are E3 ubiquitin ligases that are critical regulators of tumour necrosis factor (TNF) receptor (TNFR)-mediated signalling. Through their E3 ligase activity c-IAP proteins promote ubiquitination of receptor-interaction protein 1 (RIP1), NF-κB-inducing kinase (NIK) and themselves, and regulate the assembly of TNFR signalling complexes. Consequently, in the absence of c-IAP proteins, TNFR-mediated activation of NF-κB and MAPK pathways and the induction of gene expression are severely reduced. Here, we describe the identification of OTUB1 as a c-IAP-associated deubiquitinating enzyme that regulates c-IAP1 stability. OTUB1 disassembles K48-linked polyubiquitin chains from c-IAP1 in vitro and in vivo within the TWEAK receptor-signalling complex. Downregulation of OTUB1 promotes TWEAK- and IAP antagonist-stimulated caspase activation and cell death, and enhances c-IAP1 degradation. Furthermore, knockdown of OTUB1 reduces TWEAK-induced activation of canonical NF-κB and MAPK signalling pathways and modulates TWEAK-induced gene expression. Finally, suppression of OTUB1 expression in zebrafish destabilizes c-IAP (Birc2) protein levels and disrupts fish vasculature. These results suggest that OTUB1 regulates NF-κB and MAPK signalling pathways and TNF-dependent cell death by modulating c-IAP1 stability.


Assuntos
Cisteína Endopeptidases/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Transdução de Sinais , Ubiquitina/metabolismo , Animais , Vasos Sanguíneos/embriologia , Linhagem Celular , Enzimas Desubiquitinantes , Humanos , Hidrólise , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Peixe-Zebra/embriologia
10.
Nature ; 474(7351): 403-6, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21572435

RESUMO

The proto-oncogenes ETV1, ETV4 and ETV5 encode transcription factors in the E26 transformation-specific (ETS) family, which includes the most frequently rearranged and overexpressed genes in prostate cancer. Despite being critical regulators of development, little is known about their post-translational regulation. Here we identify the ubiquitin ligase COP1 (also known as RFWD2) as a tumour suppressor that negatively regulates ETV1, ETV4 and ETV5. ETV1, which is mutated in prostate cancer more often, was degraded after being ubiquitinated by COP1. Truncated ETV1 encoded by prostate cancer translocation TMPRSS2:ETV1 lacks the critical COP1 binding motifs and was 50-fold more stable than wild-type ETV1. Almost all patient translocations render ETV1 insensitive to COP1, implying that this confers a selective advantage to prostate epithelial cells. Indeed, COP1 deficiency in mouse prostate elevated ETV1 and produced increased cell proliferation, hyperplasia, and early prostate intraepithelial neoplasia. Combined loss of COP1 and PTEN enhanced the invasiveness of mouse prostate adenocarcinomas. Finally, rare human prostate cancer samples showed hemizygous loss of the COP1 gene, loss of COP1 protein, and elevated ETV1 protein while lacking a translocation event. These findings identify COP1 as a tumour suppressor whose downregulation promotes prostatic epithelial cell proliferation and tumorigenesis.


Assuntos
Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Motivos de Aminoácidos , Animais , Proteínas de Transporte/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Masculino , Camundongos , Proteínas Nucleares/deficiência , PTEN Fosfo-Hidrolase/deficiência , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Ligação Proteica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
11.
Mol Cell Proteomics ; 14(4): 1148-58, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25680960

RESUMO

Mass spectrometry is a powerful alternative to antibody-based methods for the analysis of histone post-translational modifications (marks). A key development in this approach was the deliberate propionylation of histones to improve sequence coverage across the lysine-rich and hydrophilic tails that bear most modifications. Several marks continue to be problematic however, particularly di- and tri-methylated lysine 4 of histone H3 which we found to be subject to substantial and selective losses during sample preparation and liquid chromatography-mass spectrometry. We developed a new method employing a "one-pot" hybrid chemical derivatization of histones, whereby an initial conversion of free lysines to their propionylated forms under mild aqueous conditions is followed by trypsin digestion and labeling of new peptide N termini with phenyl isocyanate. High resolution mass spectrometry was used to collect qualitative and quantitative data, and a novel web-based software application (Fishtones) was developed for viewing and quantifying histone marks in the resulting data sets. Recoveries of 53 methyl, acetyl, and phosphoryl marks on histone H3.1 were improved by an average of threefold overall, and over 50-fold for H3K4 di- and tri-methyl marks. The power of this workflow for epigenetic research and drug discovery was demonstrated by measuring quantitative changes in H3K4 trimethylation induced by small molecule inhibitors of lysine demethylases and siRNA knockdown of epigenetic modifiers ASH2L and WDR5.


Assuntos
Histonas/metabolismo , Espectrometria de Massas/métodos , Processamento de Proteína Pós-Traducional , Coloração e Rotulagem/métodos , Cromatografia Líquida , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Histona Desmetilases/metabolismo , Humanos , Lisina/metabolismo , Metilação , Peptídeos/metabolismo , Propionatos/metabolismo , RNA Interferente Pequeno/metabolismo , Padrões de Referência , Tripsina/metabolismo
12.
Proteomics ; 16(14): 1992-7, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27282143

RESUMO

The PI3K pathway is commonly activated in cancer. Only a few studies have attempted to explore the spectrum of phosphorylation signaling downstream of the PI3K cascade. Such insight, however, is imperative to understand the mechanisms responsible for oncogenic phenotypes. By applying MS-based phosphoproteomics, we mapped 2509 phosphorylation sites on 1096 proteins, and quantified their responses to activation or inhibition of PIK3CA using isogenic knock-in derivatives and a series of targeted inhibitors. We uncovered phosphorylation changes in a wide variety of proteins involved in cell growth and proliferation, many of which have not been previously associated with PI3K signaling. A significant update of the posttranslational modification database PHOSIDA (http://www.phosida.com) allows efficient use of the data. All MS data have been deposited in the ProteomeXchange with identifier PXD003899 (http://proteomecentral.proteomexchange.org/dataset/PXD003899).


Assuntos
Transformação Celular Neoplásica/genética , Células Epiteliais/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/genética , Fosfatidilinositol 3-Quinases/genética , Fosfoproteínas/genética , Processamento de Proteína Pós-Traducional , Antineoplásicos/farmacologia , Linhagem Celular , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Classe I de Fosfatidilinositol 3-Quinases , Colo/citologia , Colo/efeitos dos fármacos , Colo/metabolismo , Bases de Dados Genéticas , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Humanos , Internet , Mutação , Proteínas de Neoplasias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteômica/métodos , Transdução de Sinais , Software
13.
Proteomics ; 16(14): 1998-2004, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27273156

RESUMO

The RAS-RAF-MEK-ERK (MAPK) pathway is prevalently perturbed in cancer. Recent large-scale sequencing initiatives profiled thousands of tumors providing insight into alterations at the DNA and RNA levels. These efforts confirmed that key nodes of the MAPK pathway, in particular KRAS and BRAF, are among the most frequently altered proteins in cancer. The establishment of targeted therapies, however, has proven difficult. To decipher the underlying challenges, it is essential to decrypt the phosphorylation network spanned by the MAPK core axis. Using mass spectrometry we identified 2241 phosphorylation sites on 1020 proteins, and measured their responses to inhibition of MEK or ERK. Multiple phosphorylation patterns revealed previously undetected feedback, as upstream signaling nodes, including receptor kinases, showed changes at the phosphorylation level. We provide a dataset rich in potential therapeutic targets downstream of the MAPK cascade. By integrating TCGA (The Cancer Genome Atlas) data, we highlight some downstream phosphoproteins that are frequently altered in cancer. All MS data have been deposited in the ProteomeXchange with identifier PXD003908 (http://proteomecentral.proteomexchange.org/dataset/PXD003908).


Assuntos
Neoplasias do Colo/genética , Retroalimentação Fisiológica , Regulação Neoplásica da Expressão Gênica , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Proteínas de Neoplasias/genética , Fosfoproteínas/genética , Sequência de Aminoácidos , Antineoplásicos/farmacologia , Atlas como Assunto , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Perfilação da Expressão Gênica , Células HCT116 , Humanos , Internet , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteômica/métodos , Software
14.
Mol Cell Proteomics ; 13(9): 2450-66, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25000943

RESUMO

To facilitate accurate histone variant and post-translational modification (PTM) quantification via mass spectrometry, we present a library of 93 synthetic peptides using Protein-Aqua™ technology. The library contains 55 peptides representing different modified forms from histone H3 peptides, 23 peptides representing H4 peptides, 5 peptides representing canonical H2A peptides, 8 peptides representing H2A.Z peptides, and peptides for both macroH2A and H2A.X. The PTMs on these peptides include lysine mono- (me1), di- (me2), and tri-methylation (me3); lysine acetylation; arginine me1; serine/threonine phosphorylation; and N-terminal acetylation. The library was subjected to chemical derivatization with propionic anhydride, a widely employed protocol for histone peptide quantification. Subsequently, the detection efficiencies were quantified using mass spectrometry extracted ion chromatograms. The library yields a wide spectrum of detection efficiencies, with more than 1700-fold difference between the peptides with the lowest and highest efficiencies. In this paper, we describe the impact of different modifications on peptide detection efficiencies and provide a resource to correct for detection biases among the 93 histone peptides. In brief, there is no correlation between detection efficiency and molecular weight, hydrophobicity, basicity, or modification type. The same types of modifications may have very different effects on detection efficiencies depending on their positions within a peptide. We also observed antagonistic effects between modifications. In a study of mouse trophoblast stem cells, we utilized the detection efficiencies of the peptide library to correct for histone PTM/variant quantification. For most histone peptides examined, the corrected data did not change the biological conclusions but did alter the relative abundance of these peptides. For a low-abundant histone H2A variant, macroH2A, the corrected data led to a different conclusion than the uncorrected data. The peptide library and detection efficiencies presented here may serve as a resource to facilitate studies in the epigenetics and proteomics fields.


Assuntos
Histonas/metabolismo , Biblioteca de Peptídeos , Aminoácidos/metabolismo , Animais , Células Cultivadas , Histonas/química , Marcação por Isótopo , Espectrometria de Massas , Metilação , Camundongos , Fosforilação , Processamento de Proteína Pós-Traducional , Células-Tronco , Trofoblastos
15.
BMC Genomics ; 16 Suppl 8: S5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26110843

RESUMO

BACKGROUND: Many cancer cells show distorted epigenetic landscapes. The Cancer Genome Atlas (TCGA) project profiles thousands of tumors, allowing the discovery of somatic alterations in the epigenetic machinery and the identification of potential cancer drivers among members of epigenetic protein families. METHODS: We integrated mutation, expression, and copy number data from 5943 tumors from 13 cancer types to train a classification model that predicts the likelihood of being an oncogene (OG), tumor suppressor (TSG) or neutral gene (NG). We applied this predictor to epigenetic regulator genes (ERGs), and used differential expression and correlation network analysis to identify dysregulated ERGs along with co-expressed cancer genes. Furthermore, we quantified global proteomic changes by mass spectrometry after EZH2 inhibition. RESULTS: Mutation-based classifiers uncovered the OG-like profile of DNMT3A and TSG-like profiles for several ERGs. Differential gene expression and correlation network analyses revealed that EZH2 is the most significantly over-expressed ERG in cancer and is co-regulated with a cell cycle network. Proteomic analysis showed that EZH2 inhibition induced down-regulation of cell cycle regulators in lymphoma cells. CONCLUSIONS: Using classical driver genes to train an OG/TSG predictor, we determined the most predictive features at the gene level. Our predictor uncovered one OG and several TSGs among ERGs. Expression analyses elucidated multiple dysregulated ERGs including EZH2 as member of a co-expressed cell cycle network.


Assuntos
Biologia Computacional , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Neoplasias/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste , Genes Supressores de Tumor , Humanos , Oncogenes , Complexo Repressor Polycomb 2/genética , Proteoma/genética
16.
EMBO Rep ; 14(4): 373-81, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23459205

RESUMO

Ubiquilins (Ubqlns)-a family of ubiquitin-binding proteins-are involved in several protein degradation pathways and have been implicated in various neurodegenerative diseases. Ubqln1 regulates autophagosome maturation during autophagy-mediated degradation. We now show that Ubqln4 mediates the interaction between Ubqln1 and the autophagy machinery by recruiting Ubqln1 to LC3. This targeting of Ubqln1 to autophagosomes requires the Ubqln4 UBL domain and the Ubqln1 UBA domain. This study identifies a new role for Ubqln4, expanding the role for Ubqlns in protein degradation.


Assuntos
Autofagia , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Proteínas Relacionadas à Autofagia , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde/biossíntese , Células HEK293 , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Proteínas Luminescentes/biossíntese , Microscopia Confocal , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/metabolismo , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fagossomos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , RNA Interferente Pequeno/genética , Proteína Vermelha Fluorescente
18.
J Infect Dis ; 209(10): 1533-41, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24280367

RESUMO

BACKGROUND: Detailed knowledge on protein repertoire of a pathogen during host infection is needed for both developing a better understanding of the pathogenesis and defining potential therapeutic targets. Such data, however, have been missing for Staphylococcus aureus, a major human pathogen. METHODS: We determined the surface proteome of methicillin-resistant S. aureus (MRSA) clone usa300 derived directly from murine systemic infectiON. RESULTS: The majority of the in vivo-expressed surface-associated proteins were lipoproteins involved in nutrient acquisition, especially uptake of metal ions. Enzyme-linked immunosorbent assay (ELISA) of convalescent human serum samples revealed that proteins that were highly produced during murine experimental infection were also produced during natural human infection. We found that among the 7 highly abundant lipoproteins only MntC, which is the manganese-binding protein of the MntABC system, was essential for MRSA virulence during murine systemic infection. Moreover, we show that MntA and MntB are equally important for MRSA virulence. CONCLUSIONS: Besides providing experimental evidence that MntABC might be a potential therapeutic target for the development of antibiotics, our in vivo proteomics data will serve as a valuable basis for defining potential antigen combinations for multicomponent vaccines.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/metabolismo , Proteômica , Animais , Proteínas de Bactérias/genética , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Rim/microbiologia , Lipoproteínas/genética , Lipoproteínas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Camundongos , Soro/imunologia , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/prevenção & controle , Vacinas Antiestafilocócicas/imunologia , Virulência
19.
J Biol Chem ; 287(52): 43482-91, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23135270

RESUMO

Proprotein convertase subtilisin/kexin 9 (PCSK9) regulates plasma LDL cholesterol levels by regulating the degradation of LDL receptors. Another proprotein convertase, furin, cleaves PCSK9 at Arg(218)-Gln(219) in the surface-exposed "218 loop." This cleaved form circulates in blood along with the intact form, albeit at lower concentrations. To gain a better understanding of how cleavage affects PCSK9 function, we produced recombinant furin-cleaved PCSK9 using antibody Ab-3D5, which binds the intact but not the cleaved 218 loop. Using Ab-3D5, we also produced highly purified hepsin-cleaved PCSK9. Hepsin cleaves PCSK9 at Arg(218)-Gln(219) more efficiently than furin but also cleaves at Arg(215)-Phe(216). Further analysis by size exclusion chromatography and mass spectrometry indicated that furin and hepsin produced an internal cleavage in the 218 loop without the loss of the N-terminal segment (Ser(153)-Arg(218)), which remained attached to the catalytic domain. Both furin- and hepsin-cleaved PCSK9 bound to LDL receptor with only 2-fold reduced affinity compared with intact PCSK9. Moreover, they reduced LDL receptor levels in HepG2 cells and in mouse liver with only moderately lower activity than intact PCSK9, consistent with the binding data. Single injection into mice of furin-cleaved PCSK9 resulted in significantly increased serum cholesterol levels, approaching the increase by intact PCSK9. These findings indicate that circulating furin-cleaved PCSK9 is able to regulate LDL receptor and serum cholesterol levels, although somewhat less efficiently than intact PCSK9. Therapeutic anti-PCSK9 approaches that neutralize both forms should be the most effective in preserving LDL receptors and in lowering plasma LDL cholesterol.


Assuntos
Colesterol/sangue , Furina/metabolismo , Pró-Proteína Convertases/metabolismo , Proteólise , Receptores de LDL/metabolismo , Serina Endopeptidases/metabolismo , Animais , Anticorpos Monoclonais Murinos/química , Colesterol/genética , Furina/genética , Células Hep G2 , Humanos , Fígado/metabolismo , Camundongos , Camundongos Knockout , Pró-Proteína Convertase 9 , Pró-Proteína Convertases/genética , Estrutura Secundária de Proteína , Receptores de LDL/genética , Serina Endopeptidases/genética
20.
Mol Cell Proteomics ; 10(5): M110.003756, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21048196

RESUMO

Ubiquitinated substrates can be recruited to macromolecular complexes through interactions between their covalently bound ubiquitin (Ub) signals and Ub receptor proteins. To develop a functional understanding of the Ub system in vivo, methods are needed to determine the composition of Ub signals on individual substrates and in protein mixtures. Mass spectrometry has emerged as an important tool for characterizing the various forms of Ub. In the Ubiquitin-AQUA approach, synthetic isotopically labeled internal standard peptides are used to quantify unbranched peptides and the branched -GG signature peptides generated by trypsin digestion of Ub signals. Here we have built upon existing methods and established a comprehensive platform for the characterization of Ub signals. Digested peptides and isotopically labeled standards are analyzed either by selected reaction monitoring on a QTRAP mass spectrometer or by narrow window extracted ion chromatograms on a high resolution LTQ-Orbitrap. Additional peptides are now monitored to account for the N terminus of ubiquitin, linear polyUb chains, the peptides surrounding K33 and K48, and incomplete digestion products. Using this expanded battery of peptides, the total amount of Ub in a sample can be determined from multiple loci within the protein, minimizing possible confounding effects of complex Ub signals, digestion abnormalities, or use of mutant Ub in experiments. These methods have been useful for the characterization of in vitro, multistage ubiquitination and have now been extended to reactions catalyzed by multiple E2 enzymes. One question arising from in vitro studies is whether individual protein substrates in cells may be modified by multiple forms of polyUb. Here we have taken advantage of recently developed polyubiquitin linkage-specific antibodies recognizing K48- and K63-linked polyUb chains, coupled with these mass spectrometry methods, to further evaluate the abundance of mixed linkage Ub substrates in cultured mammalian cells. By combining these two powerful tools, we show that polyubiquitinated substrates purified from cells can be modified by mixtures of K48, K63, and K11 linkages.


Assuntos
Proteínas Mutantes/química , Ubiquitina/química , Proteínas Ubiquitinadas/metabolismo , Sequência de Aminoácidos , Células HEK293 , Humanos , Imunoprecipitação , Células Jurkat , Leupeptinas/farmacologia , Lisina/química , Metionina/química , Dados de Sequência Molecular , Oxirredução , Fragmentos de Peptídeos/química , Inibidores de Proteassoma , Espectrometria de Massas em Tandem , Proteínas Ubiquitinadas/química , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA