Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Neurocrit Care ; 37(1): 26-37, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35028889

RESUMO

BACKGROUND: Cerebral edema and intracranial hypertension are major contributors to unfavorable prognosis in traumatic brain injury (TBI). Local epigenetic changes, particularly in DNA methylation, may influence gene expression and thus host response/secondary injury after TBI. It remains unknown whether DNA methylation in the central nervous system is associated with cerebral edema severity or intracranial hypertension post TBI. We sought to identify epigenome-wide DNA methylation patterns associated with these forms of secondary injury after TBI. METHODS: We obtained genome-wide DNA methylation profiles of DNA extracted from ventricular cerebrospinal fluid samples at three different postinjury time points from a prospective cohort of patients with severe TBI (n = 89 patients, 254 samples). Cerebral edema and intracranial pressure (ICP) measures were clustered to generate composite end points of cerebral edema and ICP severity. We performed an unbiased epigenome-wide association study (EWAS) to test associations between DNA methylation at 419,895 cytosine-phosphate-guanine (CpG) sites and cerebral edema/ICP severity categories. Given inflated p values, we conducted permutation tests for top CpG sites to filter out potential false discoveries. RESULTS: Our data-driven hierarchical clustering across six cerebral edema and ICP measures identified two groups differing significantly in ICP based on the EWAS-identified CpG site cg22111818 in RGMA (Repulsive guidance molecule A, permutation p = 4.20 × 10-8). At 3-4 days post TBI, patients with severe intracranial hypertension had significantly lower levels of methylation at cg22111818. CONCLUSIONS: We report a novel potential relationship between intracranial hypertension after TBI and an acute, nonsustained reduction in DNA methylation at cg22111818 in the RGMA gene. To our knowledge, this is the largest EWAS in severe TBI. Our findings are further strengthened by previous findings that RGMA modulates axonal repair in other central nervous system disorders, but a role in intracranial hypertension or TBI has not been previously identified. Additional work is warranted to validate and extend these findings, including assessment of its possible role in risk stratification, identification of novel druggable targets, and ultimately our ability to personalize therapy in TBI.


Assuntos
Edema Encefálico , Lesões Encefálicas Traumáticas , Hipertensão Intracraniana , Edema Encefálico/complicações , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/genética , Metilação de DNA , Epigenoma , Humanos , Hipertensão Intracraniana/complicações , Hipertensão Intracraniana/genética , Pressão Intracraniana , Estudos Prospectivos
2.
Neurocrit Care ; 32(2): 550-563, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31346934

RESUMO

BACKGROUND/OBJECTIVE: Preclinical evidence suggests that iron homeostasis is an important biological mechanism following aneurysmal subarachnoid hemorrhage (aSAH); however, this concept is underexplored in humans. This study examined the relationship between patient outcomes following aSAH and genetic variants and DNA methylation in the hepcidin gene (HAMP), a key regulator of iron homeostasis. METHODS: In this exploratory, longitudinal observational study, participants with verified aSAH were monitored for acute outcomes including cerebral vasospasm (CV) and delayed cerebral ischemia (DCI) and evaluated post-discharge at 3 and 12 months for long-term outcomes of death and functional status using the Modified Rankin Scale (mRS; poor = 3-6) and Glasgow Outcome Scale (GOS; poor = 1-3). Participants were genotyped for two genetic variants, and DNA methylation data were collected from serial cerebrospinal fluid over 14 days post-aSAH at eight methylation sites within HAMP. Participants were grouped based on their site-specific DNA methylation trajectory, with and without correcting for cell-type heterogeneity (CTH), and the associations between genetic variants and inferred DNA methylation trajectory groups and patient outcomes were tested. To correct for multiple testing, an empirical significance threshold was computed using permutation testing. RESULTS: Genotype data for rs10421768 and rs7251432 were available for 241 and 371 participants, respectively, and serial DNA methylation data were available for 260 participants. Acute outcome prevalence included CV in 45% and DCI in 37.1% of the overall sample. Long-term outcome prevalence at 3 and 12 months included poor GOS in 23% and 21%, poor mRS in 31.6% and 27.3%, and mortality in 15.1% and 18.2%, respectively, in the overall sample. Being homozygous for the rs7251432 variant allele was significantly associated with death at 3 months (p = 0.003) and was the only association identified that passed adjustment for multiple testing mentioned above. Suggestive associations (defined as trending toward significance, p value < 0.05, but not meeting empirical significance thresholds) were identified between the homozygous variant allele for rs7251432 and poor GOS and mRS at 3 months (both p = 0.04) and death at 12 months (p = 0.02). For methylation trajectory groups, no associations remained significant after correction for multiple testing. However, for methylation trajectory groups not adjusted for CTH, suggestive associations were identified between cg18149657 and poor GOS and mRS at 3 months (p = 0.003 and p = 0.04, respectively) and death at 3 months (p = 0.04), and between cg26283059 and DCI (p = 0.01). For methylation trajectory groups adjusted for CTH, suggestive associations were identified between cg02131995 and good mRS at 12 months (p = 0.02), and between cg26283059 and DCI (p = 0.01). CONCLUSIONS: This exploratory pilot study offers preliminary evidence that HAMP may play a role in patient outcomes after aSAH. Replication of this study and mechanistic investigation of the role of HAMP in patient outcomes after aSAH are needed.


Assuntos
Isquemia Encefálica/genética , Metilação de DNA/genética , Hepcidinas/genética , Hemorragia Subaracnóidea/genética , Vasoespasmo Intracraniano/genética , Adulto , Idoso , Isquemia Encefálica/etiologia , Isquemia Encefálica/fisiopatologia , Progressão da Doença , Feminino , Estado Funcional , Escala de Resultado de Glasgow , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Polimorfismo de Nucleotídeo Único , Prognóstico , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/fisiopatologia , Hemorragia Subaracnóidea/terapia , Vasoespasmo Intracraniano/etiologia , Vasoespasmo Intracraniano/fisiopatologia
3.
bioRxiv ; 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36945402

RESUMO

Merosin-deficient congenital muscular dystrophy (MDC1A) is an autosomal recessive disorder caused by mutations in the LAMA2 gene, resulting in a defective form of the extracellular matrix protein laminin-α2 (LAMA2). Individuals diagnosed with MDC1A exhibit progressive muscle wasting and declining neuromuscular functions. No treatments for this disorder are currently available. We previously showed that postnatal Lama1 upregulation, achieved through CRISPR activation (CRISPRa), compensates for Lama2 deficiency and prevents neuromuscular pathophysiology in a mouse model of MDC1A. In this study, we assessed the feasibility of upregulating human LAMA1 as a potential therapeutic strategy for individuals with MDC1A, regardless of their mutations. We hypothesized that CRISPRa-mediated upregulation of human LAMA1 would compensate for the lack of LAMA2 and rescue cellular abnormalities in MDC1A fibroblasts. Global transcriptomic and pathway enrichment analyses of fibroblasts collected from individuals carrying pathogenic LAMA2 mutations, compared with healthy controls, indicated higher expression of transcripts encoding proteins that contribute to wound healing, including Transforming Growth Factor-ß (TGF-ß) and Fibroblast Growth Factor (FGF). These findings were supported by wound-healing assays indicating that MDC1A fibroblasts migrated significantly more rapidly than the controls. Subsequently, we treated the MDC1A fibroblasts with SadCas9-2XVP64 and sgRNAs targeting the LAMA1 promoter. We observed robust LAMA1 expression, which was accompanied by significant decreases in cell migration and expression of FGFR2, TGF-ß2, and ACTA2, which are involved in the wound-healing mechanism in MDC1A fibroblasts. Collectively, our data suggest that CRISPRa-mediated LAMA1 upregulation may be a feasible mutation-independent therapeutic approach for MDC1A. This strategy might be adapted to address other neuromuscular diseases and inherited conditions in which strong compensatory mechanisms have been identified.

4.
Artigo em Inglês | MEDLINE | ID: mdl-35359917

RESUMO

Background: Delayed cerebral ischemia (DCI) is a common secondary complication and an important cause of disability and mortality among patients who survive aneurysmal subarachnoid hemorrhage (aSAH). Knowledge on DCI pathogenesis, risk factors, and biomarkers are essential for early detection and improved prognosis. To investigate the role of DNA methylation in DCI risk, we conducted an epigenome-wide association study (EWAS) in 68 patients followed up to 1 year after the initial aneurysm rupture. Blood samples were collected within 48 h post hemorrhage and used for DNA methylation profiling at ~ 450k CpG sites. A separate cohort of 175 patients was sequenced for the top CpG sites from the discovery analysis for a replication of the EWAS findings. Results: EWAS did not identify any epigenome-wide significant CpGs. The top signal, cg18031596, was annotated to ANGPT1, a gene with critical functions in angiogenesis after vascular injury. Post hoc power calculations indicated a well-powered discovery analysis for cg18031596. Analysis of the replication cohort showed that four out of the five CpG sites sequenced at the ANGPT1 locus passed a Bonferroni-adjusted significance threshold. In a pooled analysis of the entire sample, three out of five yielded a significant p-value, and the top association signal (p-value = 0.004) was seen for a CpG that was not originally measured in the discovery EWAS. However, four ANGPT1 CpG sites had an opposite effect direction in the replication analysis compared to the discovery EWAS, marking a failure of replication. We carefully examined this observed flip in directions and propose several possible explanations in addition to that it was a random chance that ANGPT1 ranked at the top in the discovery EWAS. Conclusions: We failed to demonstrate a significant and consistent effect of ANGPT1 methylation in DCI risk in two cohorts. Though the replication attempt to weaken the overall support of this gene, given its relevant function and top rank of significance in the EWAS, our results call for future studies of larger aSAH cohorts to determine its relevance for the occurrence of DCI.

5.
Front Genet ; 11: 671, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670358

RESUMO

One challenge in conducting DNA methylation-based epigenome-wide association study (EWAS) is the appropriate cleaning and quality-checking of data to minimize biases and experimental artifacts, while simultaneously retaining potential biological signals. These issues are compounded in studies that include multiple tissue types, and/or tissues for which reference data are unavailable to assist in adjusting for cell-type mixture, for example cerebral spinal fluid (CSF). For our study that evaluated blood and CSF taken from aneurysmal subarachnoid hemorrhage (aSAH) patients, we developed a protocol to clean and quality-check genome-wide methylation levels and compared the methylomic profiles of the two tissues to determine whether blood is a suitable surrogate for CSF. CSF samples were collected from 279 aSAH patients longitudinally during the first 14 days of hospitalization, and a subset of 88 of these patients also provided blood samples within the first 2 days. Quality control (QC) procedures included identification and exclusion of poor performing samples and low-quality probes, functional normalization, and correction for cell-type heterogeneity via surrogate variable analysis (SVA). Significant differences in rates of poor sample performance was observed between blood (1.1% failing QC) and CSF (9.12% failing QC; p = 0.003). Functional normalization increased the concordance of methylation values among technical replicates in both CSF and blood. SVA improved the asymptotic behavior of the test of association in a simulated EWAS under the null hypothesis. To determine the suitability of blood as a surrogate for CSF, we calculated the correlations of adjusted methylation values at each CpG between blood and CSF globally and by genomic regions. Overall, mean within-CpG correlation was low (r < 0.26), suggesting that blood is not a suitable surrogate for global methylation in CSF. However, differences in the magnitude of the correlation were observed by genomic region (CpG island, shore, shelf, open sea; p < 0.001 for all) and orientation with respect to nearby genes (3' UTR, transcription start site, exon, body, 5' UTR; p < 0.01 for all). In conclusion, the correlation analysis and QC pipelines indicated that DNA extracted from blood was not, overall, a suitable surrogate for DNA from CSF in aSAH methylomic studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA