Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Pharm Sci ; 112(3): 718-730, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36150470

RESUMO

Insulin is one of the most important drugs in the treatment of diabetes. There is an increasing interest in the oral administration of insulin as it mimics the physiological pathway and potentially reduces the side effects associated with subcutaneous injection. Therefore, insulin-loaded polyelectrolyte complex (PEC) nanoparticles were prepared by the ionic cross-linking method using protamine sulfate as the polycationic and sodium alginate as the anionic polymer. Taguchi experimental design was used for the optimization of nanoparticles by varying the concentration of sodium alginate, the mass ratio of sodium alginate to protamine, and the amount of insulin. The optimized nanoparticle formulation was used for further in vitro characterization. Then, insulin-loaded PEC nanoparticles were placed in hard gelatin capsules and the capsules were enteric-coated by Eudragit L100-55 (PEC-eCAPs). Hypoglycemic effects PEC-eCAPs were determined in vivo by oral administration to diabetic rats. Furthermore, in vivo distribution of PEC nanoparticles was evaluated by fluorescein isothiocyanate (FITC) labelled nanoparticles. The experimental design led to nanoparticles with a size of 194.4 nm and a polydispersity index (PDI) of 0.31. The encapsulation efficiency (EE) was calculated as 95.96%. In vivo studies showed that PEC-eCAPs significantly reduced the blood glucose level of rats at the 8th hour compared to oral insulin solution. It was concluded that PEC nanoparticles loaded into enteric-coated hard gelatin capsules provide a promising delivery system for the oral administration of insulin.


Assuntos
Diabetes Mellitus Experimental , Nanopartículas , Ratos , Animais , Insulina , Diabetes Mellitus Experimental/tratamento farmacológico , Cápsulas , Polieletrólitos , Gelatina , Glicemia , Hipoglicemiantes , Administração Oral , Alginatos
2.
Pharmaceutics ; 15(3)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36986724

RESUMO

The cell interaction, mechanism of cell entry and intracellular fate of surface decorated nanoparticles are known to be affected by the surface density of targeting agents. However, the correlation between nanoparticles multivalency and kinetics of the cell uptake process and disposition of intracellular compartments is complicated and dependent on a number of physicochemical and biological parameters, including the ligand, nanoparticle composition and colloidal properties, features of targeted cells, etc. Here, we have carried out an in-depth investigation on the impact of increasing folic acid density on the kinetic uptake process and endocytic route of folate (FA)-targeted fluorescently labelled gold nanoparticles (AuNPs). A set of AuNPs (15 nm mean size) produced by the Turkevich method was decorated with 0-100 FA-PEG3.5kDa-SH molecules/particle, and the surface was saturated with about 500 rhodamine-PEG2kDa-SH fluorescent probes. In vitro studies carried out using folate receptor overexpressing KB cells (KBFR-high) showed that the cell internalization progressively increased with the ligand surface density, reaching a plateau at 50:1 FA-PEG3.5kDa-SH/particle ratio. Pulse-chase experiments showed that higher FA density (50 FA-PEG3.5kDa-SH molecules/particle) induces more efficient particle internalization and trafficking to lysosomes, reaching the maximum concentration in lysosomes at 2 h, than the lower FA density of 10 FA-PEG3.5kDa-SH molecules/particle. Pharmacological inhibition of endocytic pathways and TEM analysis showed that particles with high folate density are internalized predominantly by a clathrin-independent process.

3.
J Control Release ; 363: 101-113, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37722420

RESUMO

Although cationic liposomes are efficient carriers for nucleic acid delivery, their toxicity often hampers the clinical translation. Polyethylene glycol (PEG) coating has been largely used to improve their stability and reduce toxicity. Nevertheless, it has been found to decrease the transfection process. In order to exploit the advantages of cationic liposomes and PEG decoration for nucleic acid delivery, liposomes decorated with tetraArg-[G-1]-distearoyl glycerol (Arg4-DAG) dendronic oligo-cationic lipid enhancer (OCE) and PEG-lipid have been investigated. Non decorated or OCE-decorated lipoplexes (OCEfree-LPX and OCE-LPX, respectively) were obtained by lipid film hydration using oligonucleotide (ON) solutions. PEG and OCE/PEG decorated lipoplexes (PEG-OCEfree-LPX and PEG-OCE-LPX, respectively) were obtained by post-insertion of 2 or 5 kDa PEG-DSPE on preformed lipoplexes. The OCE decoration yielded lipoplexes with size of about 240 nm, 84% loading efficiency at 10 N/P ratio, ten times higher than OCEfree-LPX, and prevented the ON release when incubated with physiological heparin concentration or with plasma. The PEG decoration reduced the zeta potential, enhanced the lipoplex stability in serum and decreased both hemolysis and cytotoxicity, while it did not affect the lipoplex size and ON loading. With respect to OCEfree-LPX, the OCE-LPX remarkably associated with cells and were taken up by different cancer cell lines (HeLa and MDA-MB-231). Interestingly, 2 or 5 kDa PEG decoration did not reduce either the cell interaction or the cell up-take of the cationic lipoplexes. With siRNA as a payload, OCE enabled efficient internalization, but endosomal release was hampered. Post-transfection treatment with the lysosomotropic drug chloroquine allowed to identify the optimal time point for endosomal escape. Chloroquine treatment after 12 to 20 h of LPX pre-incubation enabled siRNA mediated target knockdown indicating that this is the time window of endo-lysosomal processing. This indicates that OCE can protect siRNA from lysosomal degradation for up to 20 h, as shown by these rescue experiments.


Assuntos
Lipossomos , Polietilenoglicóis , Humanos , RNA Interferente Pequeno/genética , Transfecção , Células HeLa , Lipídeos , Cloroquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA