Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell ; 23(9): 3428-41, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21934144

RESUMO

Mitochondrial-plastid interdependence within the plant cell is presumed to be essential, but measurable demonstration of this intimate interaction is difficult. At the level of cellular metabolism, several biosynthetic pathways involve both mitochondrial- and plastid-localized steps. However, at an environmental response level, it is not clear how the two organelles intersect in programmed cellular responses. Here, we provide evidence, using genetic perturbation of the MutS Homolog1 (MSH1) nuclear gene in five plant species, that MSH1 functions within the mitochondrion and plastid to influence organellar genome behavior and plant growth patterns. The mitochondrial form of the protein participates in DNA recombination surveillance, with disruption of the gene resulting in enhanced mitochondrial genome recombination at numerous repeated sequences. The plastid-localized form of the protein interacts with the plastid genome and influences genome stability and plastid development, with its disruption leading to variegation of the plant. These developmental changes include altered patterns of nuclear gene expression. Consistency of plastid and mitochondrial response across both monocot and dicot species indicate that the dual-functioning nature of MSH1 is well conserved. Variegated tissues show changes in redox status together with enhanced plant survival and reproduction under photooxidative light conditions, evidence that the plastid changes triggered in this study comprise an adaptive response to naturally occurring light stress.


Assuntos
Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Luz , Magnoliopsida/efeitos da radiação , Mitocôndrias/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Estresse Oxidativo , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Genoma de Cloroplastos , Genoma Mitocondrial , Instabilidade Genômica , Magnoliopsida/genética , Magnoliopsida/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Oxirredução , Folhas de Planta/genética , Folhas de Planta/fisiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , Plantas Geneticamente Modificadas/efeitos da radiação , Quinonas/análise , Recombinação Genética
2.
Plant Physiol ; 159(2): 710-20, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22496509

RESUMO

Multicellular eukaryotes demonstrate nongenetic, heritable phenotypic versatility in their adaptation to environmental changes. This inclusive inheritance is composed of interacting epigenetic, maternal, and environmental factors. Yet-unidentified maternal effects can have a pronounced influence on plant phenotypic adaptation to changing environmental conditions. To explore the control of phenotypy in higher plants, we examined the effect of a single plant nuclear gene on the expression and transmission of phenotypic variability in Arabidopsis (Arabidopsis thaliana). MutS HOMOLOG1 (MSH1) is a plant-specific nuclear gene product that functions in both mitochondria and plastids to maintain genome stability. RNA interference suppression of the gene elicits strikingly similar programmed changes in plant growth pattern in six different plant species, changes subsequently heritable independent of the RNA interference transgene. The altered phenotypes reflect multiple pathways that are known to participate in adaptation, including altered phytohormone effects for dwarfed growth and reduced internode elongation, enhanced branching, reduced stomatal density, altered leaf morphology, delayed flowering, and extended juvenility, with conversion to perennial growth pattern in short days. Some of these effects are partially reversed with the application of gibberellic acid. Genetic hemicomplementation experiments show that this phenotypic plasticity derives from changes in chloroplast state. Our results suggest that suppression of MSH1, which occurs under several forms of abiotic stress, triggers a plastidial response process that involves nongenetic inheritance.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Cloroplastos/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Sequência de Bases , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cloroplastos/genética , Metilação de DNA , Flores/crescimento & desenvolvimento , Flores/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Teste de Complementação Genética/métodos , Giberelinas/farmacologia , Padrões de Herança , Mitocôndrias/genética , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Fenótipo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Interferência de RNA , Sorghum/efeitos dos fármacos , Sorghum/genética , Sorghum/crescimento & desenvolvimento , Sorghum/metabolismo , Estresse Fisiológico , Transcrição Gênica , Transgenes
3.
Theor Appl Genet ; 125(3): 449-54, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22426777

RESUMO

Recombination activity plays an important role in the heteroplasmic and stoichiometric variation of plant mitochondrial genomes. Recent studies show that the nuclear gene MSH1 functions to suppress asymmetric recombination at 47 repeat pairs within the Arabidopsis mitochondrial genome. Two additional nuclear genes, RECA3 and OSB1, have also been shown to participate in the control of mitochondrial DNA exchange in Arabidopsis. Here, we demonstrate that repeat-mediated de novo recombination is enhanced in Arabidopsis and tobacco mitochondrial genomes following passage through tissue culture, which conditions the MSH1 and RECA3 suppressions. The mitochondrial DNA changes arising through in vitro culture in tobacco were reversible by plant regeneration, with correspondingly restored MSH1 transcript levels. For a growing number of plant species, mitochondrial genome sequence assembly has been complicated by insufficient information about recombinationally active repeat content. Our data suggest that passage through cell culture provides a rapid and effective means to decipher the dynamic features of a mitochondrial genome by comparative analysis of passaged and non-passaged mitochondrial DNA samples following next-generation sequencing and assembly.


Assuntos
Arabidopsis/genética , Genoma Mitocondrial , Genoma de Planta , Nicotiana/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , DNA Mitocondrial/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Recombinação Genética , Análise de Sequência de DNA
4.
BMC Biol ; 9: 64, 2011 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-21951689

RESUMO

BACKGROUND: The mitochondrial genome of higher plants is unusually dynamic, with recombination and nonhomologous end-joining (NHEJ) activities producing variability in size and organization. Plant mitochondrial DNA also generally displays much lower nucleotide substitution rates than mammalian or yeast systems. Arabidopsis displays these features and expedites characterization of the mitochondrial recombination surveillance gene MSH1 (MutS 1 homolog), lending itself to detailed study of de novo mitochondrial genome activity. In the present study, we investigated the underlying basis for unusual plant features as they contribute to rapid mitochondrial genome evolution. RESULTS: We obtained evidence of double-strand break (DSB) repair, including NHEJ, sequence deletions and mitochondrial asymmetric recombination activity in Arabidopsis wild-type and msh1 mutants on the basis of data generated by Illumina deep sequencing and confirmed by DNA gel blot analysis. On a larger scale, with mitochondrial comparisons across 72 Arabidopsis ecotypes, similar evidence of DSB repair activity differentiated ecotypes. Forty-seven repeat pairs were active in DNA exchange in the msh1 mutant. Recombination sites showed asymmetrical DNA exchange within lengths of 50- to 556-bp sharing sequence identity as low as 85%. De novo asymmetrical recombination involved heteroduplex formation, gene conversion and mismatch repair activities. Substoichiometric shifting by asymmetrical exchange created the appearance of rapid sequence gain and loss in association with particular repeat classes. CONCLUSIONS: Extensive mitochondrial genomic variation within a single plant species derives largely from DSB activity and its repair. Observed gene conversion and mismatch repair activity contribute to the low nucleotide substitution rates seen in these genomes. On a phenotypic level, these patterns of rearrangement likely contribute to the reproductive versatility of higher plants.


Assuntos
Arabidopsis/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Evolução Molecular , Genoma Mitocondrial/genética , Genoma de Planta/genética , Proteínas de Arabidopsis/genética , Sequência de Bases , Reparo de Erro de Pareamento de DNA/genética , DNA Mitocondrial/genética , Ecótipo , Rearranjo Gênico/genética , Genes de Plantas/genética , Modelos Genéticos , Dados de Sequência Molecular , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Mutação/genética , Filogenia , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único/genética , Recombinação Genética/genética , Sequências Repetitivas de Ácido Nucleico/genética , Análise de Sequência de DNA
5.
Plant Physiol ; 152(4): 1960-70, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20139171

RESUMO

Three nuclear genes involved in plant mitochondrial recombination surveillance have been previously identified. Simultaneous disruption of two of these genes, MutS Homolog1 (MSH1) and RECA3, results in extensive rearrangement of the mitochondrial genome and dramatic changes in plant growth. We have capitalized on these changes in mitochondrial genome organization to understand the role mitochondria play in plant cellular and developmental processes. Transcript profiling of the double mutants grown under normal conditions revealed differential regulation of numerous nuclear genes involved in stress responses together with increased levels of polyadenylated mitochondrial transcripts. We show that extensive rearrangement of the mitochondrial genome in Arabidopsis (Arabidopsis thaliana) directly elicits physiological stress responses in plants, with msh1 recA3 double mutants exhibiting enhanced thermotolerance. Likewise, we show that mitochondrial transcriptional changes are associated with genome recombination, so that differential gene modulation is accomplished, at least in part, through altered gene copy number.


Assuntos
Adaptação Fisiológica/genética , Arabidopsis/genética , Genoma de Planta , Temperatura , Arabidopsis/fisiologia , Sequência de Bases , Primers do DNA , DNA Mitocondrial/genética , Perfilação da Expressão Gênica , Mutação , Reação em Cadeia da Polimerase , RNA Mensageiro/genética
6.
Nat Commun ; 6: 6386, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25722057

RESUMO

Plant phenotypes respond to environmental change, an adaptive capacity that is at least partly transgenerational. However, epigenetic components of this interplay are difficult to measure. Depletion of the nuclear-encoded protein MSH1 causes dramatic and heritable changes in plant development, and here we show that crossing these altered plants with isogenic wild type produces epi-lines with heritable, enhanced growth vigour. Pericentromeric DNA hypermethylation occurs in a subset of msh1 mutants, indicative of heightened transposon repression, while enhanced growth epi-lines show large chromosomal segments of differential CG methylation, reflecting genome-wide reprogramming. When seedlings are treated with 5-azacytidine, root growth of epi-lines is restored to wild-type levels, implicating hypermethylation in enhanced growth. Grafts of wild-type floral stems to mutant rosettes produce progeny with enhanced growth and altered CG methylation strikingly similar to epi-lines, indicating a mobile signal when MSH1 is downregulated, and confirming the programmed nature of methylome and phenotype changes.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Metilação de DNA , Epigênese Genética/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Azacitidina , Sequência de Bases , Cruzamentos Genéticos , Primers do DNA/genética , Epigênese Genética/fisiologia , Biblioteca Gênica , Anotação de Sequência Molecular , Dados de Sequência Molecular , Mutação/genética , Raízes de Plantas/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único/genética , Interferência de RNA , Análise de Sequência de DNA
7.
Genetics ; 183(4): 1261-8, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19822729

RESUMO

The plant mitochondrial genome is recombinogenic, with DNA exchange activity controlled to a large extent by nuclear gene products. One nuclear gene, MSH1, appears to participate in suppressing recombination in Arabidopsis at every repeated sequence ranging in size from 108 to 556 bp. Present in a wide range of plant species, these mitochondrial repeats display evidence of successful asymmetric DNA exchange in Arabidopsis when MSH1 is disrupted. Recombination frequency appears to be influenced by repeat sequence homology and size, with larger size repeats corresponding to increased DNA exchange activity. The extensive mitochondrial genomic reorganization of the msh1 mutant produced altered mitochondrial transcription patterns. Comparison of mitochondrial genomes from the Arabidopsis ecotypes C24, Col-0, and Ler suggests that MSH1 activity accounts for most or all of the polymorphisms distinguishing these genomes, producing ecotype-specific stoichiometric changes in each line. Our observations suggest that MSH1 participates in mitochondrial genome evolution by influencing the lineage-specific pattern of mitochondrial genetic variation in higher plants.


Assuntos
Arabidopsis/citologia , Arabidopsis/genética , Núcleo Celular/genética , Variação Genética , Genoma Mitocondrial/genética , Recombinação Genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Mutação , Fenótipo , Reprodutibilidade dos Testes , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA