RESUMO
One of the many unresolved obstacles in the field of cardiovascular research is an uncompromising in vitro cardiac model. While primary cell sources from animal models offer both advantages and disadvantages, efforts over the past half-century have aimed to reduce their use. Additionally, obtaining a sufficient quantity of human primary cardiomyocytes faces ethical and legal challenges. As the practically unlimited source of human cardiomyocytes from induced pluripotent stem cells (hiPSC-CM) is now mostly resolved, there are great efforts to improve their quality and applicability by overcoming their intrinsic limitations. The greatest bottleneck in the field is the in vitro ageing of hiPSC-CMs to reach a maturity status that closely resembles that of the adult heart, thereby allowing for more appropriate drug developmental procedures as there is a clear correlation between ageing and developing cardiovascular diseases. Here, we review the current state-of-the-art techniques in the most realistic heart models used in disease modelling and toxicity evaluations from hiPSC-CM maturation through heart-on-a-chip platforms and in silico models to the in vitro models of certain cardiovascular diseases.
Assuntos
Cardiotoxicidade , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Humanos , Cardiotoxicidade/etiologia , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/metabolismo , Animais , Diferenciação Celular , Doenças Cardiovasculares , Modelos CardiovascularesRESUMO
Myocardial infraction (MI) is the principal risk factor for the onset of heart failure (HF). Investigations regarding the physiopathology of MI progression to HF have revealed the concerted engagement of other tissues, such as the autonomic nervous system and the medulla oblongata (MO), giving rise to systemic effects, important in the regulation of heart function. Cardiac sympathetic afferent denervation following application of resiniferatoxin (RTX) attenuates cardiac remodelling and restores cardiac function following MI. While the physiological responses are well documented in numerous species, the underlying molecular responses during the initiation and progression from MI to HF remains unclear. We obtained multi-tissue time course proteomics with a murine model of HF induced by MI in conjunction with RTX application. We isolated tissue sections from the left ventricle (LV), MO, cervical spinal cord and cervical vagal nerves at four time points over a 12-week study. Bioinformatic analyses consistently revealed a high statistical enrichment for metabolic pathways in all tissues and treatments, implicating a central role of mitochondria in the tissue-cellular response to both MI and RTX. In fact, the additional functional pathways found to be enriched in these tissues, involving the cytoskeleton, vesicles and signal transduction, could be downstream of responses initiated by mitochondria due to changes in neuronal pulse frequency after a shock such as MI or the modification of such frequency communication from the heart to the brain after RTX application. Development of future experiments, based on our proteomic results, should enable the dissection of more precise mechanisms whereby metabolic changes in neuronal and cardiac tissues can effectively ameliorate the negative physiological effects of MI via RTX application.
Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Animais , Denervação , Modelos Animais de Doenças , Redes e Vias Metabólicas , Camundongos , Infarto do Miocárdio/metabolismo , Proteômica , Transdução de SinaisRESUMO
Resiniferatoxin (RTX) is a metabolite extracted from Euphorbia resinifera. RTX is a potent capsaicin analog with specific biological activities resulting from its agonist activity with the transient receptor potential channel vanilloid subfamily member 1 (TRPV1). RTX has been examined as a pain reliever, and more recently, investigated for its ability to desensitize cardiac sensory fibers expressing TRPV1 to improve chronic heart failure (CHF) outcomes using validated animal models. Caenorhabditis elegans (C. elegans) expresses orthologs of vanilloid receptors activated by capsaicin, producing antinociceptive effects. Thus, we used C. elegans to characterize the antinociceptive properties and performed proteomic profiling to uncover specific signaling networks. After exposure to RTX, wild-type (N2) and mutant C. elegans were placed on petri dishes divided into quadrants for heat stimulation. The thermal avoidance index was used to phenotype each tested C. elegans experimental group. The data revealed for the first time that RTX can hamper the nocifensive response of C. elegans to noxious heat (32 - 35 °C). The effect was reversed 6 h after RTX exposure. Additionally, we identified the RTX target, the C. elegans transient receptor potential channel OCR-3. The proteomics and pathway enrichment analysis results suggest that Wnt signaling is triggered by the agonistic effects of RTX on C. elegans vanilloid receptors.
Assuntos
Caenorhabditis elegans , Diterpenos , Animais , Diterpenos/farmacologia , Temperatura Alta , Proteômica , Canais de Cátion TRPV/metabolismo , Via de Sinalização WntRESUMO
Neuropeptides are derived from large and inactive proteins which require endoproteolytic processing for the biosynthesis of the bioactive peptides. The maturation of pro-neuropeptide to neuropeptide is believed to be performed by ortholog pro-protein convertase EGL-3 in Caenorhabditis elegans (C. elegans). Furthermore, ortholog of Cathepsin L, CPL-1 are found in C. elegans and can potentially cleave paired basic amino acids at the N-terminal suggesting the presence of both pathways. The objective of this study was to decipher the role of EGL-3 in the proteolysis of FMRF amide-related peptides (FLPs) or neuropeptide-like proteins (NLPs) using synthetic surrogate peptides based on a universal enzymatic cleavage pattern published by Schechter and Berger and used widely in enzymology. The results show evidence that proteolysis controls FLP-21 and NLP-8 related neuropeptide levels in C. elegans. Surrogate peptides were degraded rapidly when exposed to C. elegans S9 fractions leading to the formation of specific peptide fragments related to EGL-3 and CPL-1 pathway. The results suggest that CPL-1 pathway does not compensate for the loss of the EGL-3 pathway. Proteolysis of pro-neuropeptides associated to FLP-21 and NLP-8 in elg-3 mutants are severely hampered leading to a lack of mature bioactive neuropeptides.
Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Catepsina L/metabolismo , Espectrometria de Massas , Neuropeptídeos/metabolismo , Pró-Proteína Convertase 2/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Espectrometria de Massas/métodos , Fragmentos de Peptídeos/metabolismo , Peptídeos/metabolismo , ProteóliseRESUMO
Apical neural progenitors are polarized cells for which the apical membrane is the site of cell-cell and cell-extracellular matrix adhesion events that are essential for maintaining the integrity of the developing neuroepithelium. Apical adhesion is important for several aspects of the nervous system development, including morphogenesis and neurogenesis, yet the mechanisms underlying its regulation remain poorly understood. Here, we show that ephrin B1, a cell surface protein that engages in cell signaling upon binding cognate Eph receptors, controls normal morphogenesis of the developing cortex. Efnb1-deficient embryos exhibit morphological alterations of the neuroepithelium that correlate with neural tube closure defects. Using loss-of-function experiments by ex vivo electroporation, we demonstrate that ephrin B1 is required in apical progenitors (APs) to maintain their apical adhesion. Mechanistically, we show that ephrin B1 controls cell-ECM adhesion by promoting apical localization of integrin ß1 and we identify ADP-ribosylation factor 6 (Arf6) as an important effector of ephrin B1 reverse signaling in apical adhesion of APs. Our results provide evidence for an important role for ephrin B1 in maintaining the structural integrity of the developing cortex and highlight the importance of tightly controlling apical cell-ECM adhesion for neuroepithelial development.
Assuntos
Efrina-B1/fisiologia , Neurônios/citologia , Células-Tronco/citologia , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/metabolismo , Animais , Padronização Corporal , Encéfalo/embriologia , Adesão Celular , Comunicação Celular , Membrana Celular/metabolismo , Células Cultivadas , Eletroporação , Efrina-B1/metabolismo , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Tubo Neural/embriologia , Fatores de TempoRESUMO
Whether in real or simulated microgravity, Humans or animals, the kinetics of cardiovascular adaptation and its regulation by the autonomic nervous system (ANS) remain controversial. In this study, we used hindlimb unloading (HU) in 10 conscious mice. Blood pressure (BP), heart rate (HR), temperature, and locomotor activity were continuously monitored with radio-telemetry, during 3 days of control, 5 days of HU, and 2 days of recovery. Six additional mice were used to assess core temperature. ANS activity was indirectly determined by analyzing both heart rate variability (HRV) and baroreflex sensitivity (BRS). Our study showed that HU induced an initial bradycardia, accompanied by an increase in vagal activity markers of HRV and BRS, together with a decrease in water intake, indicating the early adaptation to fluid redistribution. During HU, BRS was reduced; temperature and BP circadian rhythms were altered, showing a loss in day/night differences, a decrease in cycle amplitude, a drop in core body temperature, and an increase in day BP suggestive of a rise in sympathetic activity. Reloading induced resting tachycardia and a decrease in BP, vagal activity, and BRS. In addition to cardiovascular deconditioning, HU induces disruption in day/night rhythmicity of locomotor activity, temperature, and BP.
RESUMO
Using libraries of replication origins generated previously, we identified three clones that supported the autonomous replication of their respective plasmids in transformed, but not in normal cells. Assessment of their in vivo replication activity by in situ chromosomal DNA replication assays revealed that the chromosomal loci corresponding to these clones coincided with chromosomal replication origins in all cell lines, which were more active by 2-3-fold in the transformed by comparison to the normal cells. Evaluation of pre-replication complex (pre-RC) protein abundance at these origins in transformed and normal cells by chromatin immunoprecipitation assays, using anti-ORC2, -cdc6 and -cdt1 antibodies, showed that they were bound by these pre-RC proteins in all cell lines, but a 2-3-fold higher abundance was observed in the transformed by comparison to the normal cells. Electrophoretic mobility shift assays (EMSAs) performed on the most efficiently replicating clone, using nuclear extracts from the transformed and normal cells, revealed the presence of a DNA replication complex in transformed cells, which was barely detectable in normal cells. Subsequent supershift EMSAs suggested the presence of transformation-specific complexes. Mass spectrometric analysis of these complexes revealed potential new protein players involved in DNA replication that appear to correlate with cellular transformation.
Assuntos
Transformação Celular Neoplásica , Replicação do DNA , Origem de Replicação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Linhagem Celular Transformada , Clonagem Molecular , DNA/análise , Variações do Número de Cópias de DNA , Loci Gênicos , Genoma Humano , Humanos , Espectrometria de Massas , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Complexo de Reconhecimento de Origem/genética , Complexo de Reconhecimento de Origem/metabolismo , Plasmídeos/genéticaRESUMO
Flexible intracerebral probes for neural recording and electrical stimulation have been the focus of many research works to achieve better compliance with the surrounding tissue while minimizing rejection. Strategies have been explored to find the best way to insert flexible probes into the brain while maintaining their flexibility once positioned. Here, we present a novel and versatile scalable batch fabrication approach to deliver ultrathin and flexible probes consisting of a silk-parylene bilayer. The biodegradable silk layer, whose degradation time is programmable, provides a temporary and programmable stiffener to allow the insertion of ultrathin parylene-based flexible devices. Our innovative and robust batch fabrication technology allows complete freedom over probe design in terms of materials, size, shape, and thickness. We demonstrate successful ex vivo insertion of the probe with acute high-fidelity recordings of epileptic seizures in field potentials as well as single-unit action potentials in mouse brain slices. Our novel technological solution for implanting ultraflexible devices in the brain while minimizing rejection risks shows high potential for use in both brain research and clinical therapies.
RESUMO
Multiple system atrophy (MSA) is a rare and progressive neurodegenerative disorder. Autonomic failure (AF) is one main clinical feature which has a significant impact on health-related quality of life. The neuropathological hallmark of MSA is the abnormal accumulation of α-synuclein in oligodendrocytes forming glial cytoplasmic inclusions. Only little is known about gender and age differences in AF in MSA. This study was carried out in 6 and 12 months old transgenic PLP-α-syn and WT male and female mice. Heart rate variability (HRV) was assessed both in time, frequential and non-linear domains. Baroreflex sensitivity (BRS) was estimated by the sequence method. Duration of ventricular depolarization and repolarization (QT/QTc intervals) were evaluated from the ECG signals. Three-way ANOVA (genotype x gender x age) with Sidak's method post-hoc was used to analyze data. BRS was significantly changed in PLP-α-syn mice and was age-dependent. QT and QTc intervals were not significantly modified in PLP-α-syn mice. An impaired HRV was observed at 12 months of age in PLP-α-syn female but not in male mice, indicative of cardiovascular AF.
RESUMO
PURPOSE: Acute head-down-tilt (HDT) simulates short duration hemodynamic impact of microgravity. We sought to determine whether an increase in ICP caused by acute HDT affects sympathetic nervous system activity and cerebral blood flow velocities (CBFV) in healthy male volunteers. METHODS: HDT protocol was established as follows: basal condition immediately followed by gradual negative angles (-10°, -20° and -30°) lasting 10mn and then a return to basal condition. Velocities in the MCA (CBFV) were monitored using TCD. Sympathetic activity was assessed using MSNA. Baroreflex sensitivity (BRS) was measured using the sequence method. ICP changes were assessed using ultrasonography of the optic nerve sheath diameter (ONSD). Cerebral autoregulation (CA) was evaluated by transfer function and the autoregulatory index (Mxa). RESULTS: Twelve male volunteers (age: 35 ± 2 years) were included. Neither blood pressure nor heart rate was significantly modified during HDT. ONSD increased significantly at each step of HDT and remained elevated during Recovery. MSNA burst incidence increased at -30°. A positive correlation between variations in ONSD and variations in MSNA burst incidence was observed at -20°. CBFV were significantly diminished at -20° and -30. In the LF band, the transfer function coherence was reduced at -30° and the transfer function phase was increased at -30° and during Recovery. DISCUSSION: We found that an acute though modest increase in ICP induced by HDT was associated with an increase of sympathetic activity as assessed by MSNA, and with a reduction of CBFV with preserved CA.
Assuntos
Circulação Cerebrovascular , Pressão Intracraniana , Humanos , Masculino , Adulto , Pressão Intracraniana/fisiologia , Circulação Cerebrovascular/fisiologia , Decúbito Inclinado com Rebaixamento da Cabeça/fisiologia , Barorreflexo , Sistema Nervoso Simpático/fisiologia , Pressão Sanguínea/fisiologia , Frequência CardíacaRESUMO
Neuro-ophthalmological changes named spaceflight associated neuro-ocular syndrome (SANS) reported after spaceflights are important medical issues. Dry immersion (DI), an analog to microgravity, rapidly induces a centralization of body fluids, immobilization, and hypokinesia similar to that observed during spaceflight. The main objectives of the present study were 2-fold: (1) to assess the neuro-ophthalmological impact during 5 days of DI and (2) to determine the effects of venoconstrictive thigh cuffs (VTC), used as a countermeasure to limit headward fluid shift, on DI-induced ophthalmological adaptations. Eighteen healthy male subjects underwent 5 days of DI with or without VTC countermeasures. The subjects were randomly assigned into two groups of 9: a control and cuffs group. Retinal and optic nerve thickness were assessed with spectral-domain optical coherence tomography (OCT). Optic nerve sheath diameter (ONSD) was measured by ocular ultrasonography and used to assess indirect changes in intracranial pressure (ICP). Intraocular pressure (IOP) was assessed by applanation tonometry. A higher thickness of the retinal nerve fiber layer (RNFL) in the temporal quadrant was observed after DI. ONSD increased significantly during DI and remained higher during the recovery phase. IOP did not significantly change during and after DI. VTC tended to limit the ONSD enlargement but not the higher thickness of an RNFL induced by DI. These findings suggest that 5 days of DI induced significant ophthalmological changes. VTC were found to dampen the ONSD enlargement induced by DI.
RESUMO
AIM: Impairments in cerebral structure and cognitive performance in chronic heart failure (CHF) are critical components of its comorbidity spectrum. Autonomic afferents that arise from cardiac sensory fibres show enhanced activity with CHF. Desensitization of these fibres by local application of resiniferatoxin (RTX) during myocardial infarction (MI) is known to prevent cardiac hypertrophy, sympathetic hyperactivity and CHF. Whether these afferents mediate cerebral allostasis is unknown. METHODS: CHF was induced by myocardial infarction. To evaluate if cardiac afferents contribute to cerebral allostasis, RTX was acutely applied to the pericardial space in controls (RTX) and in MI treated animals (MI/RTX). Subjects were then evaluated in a series of behavioural tests recapitulating different symptoms of depressive disorders. Proteomics of the frontal cortices (FC) was performed to identify contributing proteins and pathways responsible for behavioural allostasis. RESULTS: Desensitization of cardiac afferents relieves hallmarks of an anxio/depressive-like state in mice. Unique protein signatures and regulatory pathways in FCs isolated from each treatment reveal the degree of complexity inherent in the FC response to stresses originating in the heart. While cortices from the combined treatment (MI/RTX) did not retain protein signatures from the individual treatment groups, all three groups suffer dysregulation in circadian entrainment. CONCLUSION: CHF is comorbid with an anxio/depressive-like state and ablation of cardiac afferents relieves the despair phenotype. The strikingly different proteomic profiles observed in FCs suggest that MI and RTX lead to unique brain-signalling patterns and that the combined treatment, potentially through destructive interference mechanisms, most closely resembles controls.
Assuntos
Insuficiência Cardíaca , Proteômica , Animais , Cardiomegalia , Coração , Insuficiência Cardíaca/tratamento farmacológico , Camundongos , Ratos , Ratos Sprague-DawleyRESUMO
It is well known that exposure to microgravity in astronauts leads to a plethora physiological responses such as headward fluid shift, body unloading, and cardiovascular deconditioning. When astronauts return to Earth, some encounter problems related to orthostatic intolerance. An impaired cerebral autoregulation (CA), which could be compromised by the effects of microgravity, has been proposed as one of the mechanisms responsible for orthostatic intolerance. CA is a homeostatic mechanism that maintains cerebral blood flow for any variations in cerebral perfusion pressure by adapting the vascular tone and cerebral vessel diameter. The ground-based models of microgravity are useful tools for determining the gravitational impact of spaceflight on human body. The head-down tilt bed rest (HDTBR), where the subject remains in supine position at -6 degrees for periods ranging from few days to several weeks is the most commonly used ground-based model of microgravity for cardiovascular deconditioning. head-down bed rest (HDBR) is able to replicate cephalic fluid shift, immobilization, confinement, and inactivity. Dry immersion (DI) model is another approach where the subject remains immersed in thermoneutral water covered with an elastic waterproof fabric separating the subject from the water. Regarding DI, this analog imitates absence of any supporting structure for the body, centralization of body fluids, immobilization and hypokinesia observed during spaceflight. However, little is known about the impact of microgravity on CA. Here, we review the fundamental principles and the different mechanisms involved in CA. We also consider the different approaches in order to assess CA. Finally, we focus on the effects of short- and long-term spaceflight on CA and compare these findings with two specific analogs to microgravity: HDBR and DI.
RESUMO
There is general acceptance that the estrogen receptor can act as a transcription factor. However, estrogens can also bind to receptors that are located at the plasma membrane and stimulate rapid intracellular signaling processes. We recently showed that a membrane-associated estrogen receptor (mER) is present within myelin and at the oligodendrocyte (OL) plasma membrane. To understand the physiological function of mER in OLs, we investigated its cellular localization and involvement in rapid signaling in CG4 cells and OL primary cultures. An ERalpha was expressed along the lacy network of veins in the membrane sheets and in the perikaryon and nucleus in OLs. ERbeta was located in the nucleus, and to a lesser extent along the veins. The expression of ERalpha and ERbeta in OL membranes was confirmed by Western analysis of isolated membranes. OL membranes mainly had truncated forms of ERalpha, 53 and 50 kDa, in addition to some 65 kDa form, whereas ERbeta was a 54 kDa form. CG4 cells and OLs were pulsed with 17alpha- and 17beta-estradiol for various times and the total lysates were analyzed for phosphorylated kinases. Both 17alpha- and 17beta-estradiol elicited rapid phosphorylation of p42/44MAPK, Akt, and GSK-3beta within 8 min. This rapid signaling is consistent with estradiol ligation of a membrane form of ER. Since 17alpha-estradiol is produced at higher concentrations than 17beta-estradiol in the brain of both sexes, signaling via 17alpha-estradiol-liganded mER may have an important function in OLs.
Assuntos
Membrana Celular/metabolismo , Sistema Nervoso Central/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Receptores de Estrogênio/metabolismo , Animais , Animais Recém-Nascidos , Membrana Celular/ultraestrutura , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Células Cultivadas , Sistema Nervoso Central/ultraestrutura , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Estradiol/metabolismo , Estradiol/farmacologia , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/análise , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/agonistas , Receptor beta de Estrogênio/análise , Receptor beta de Estrogênio/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Bainha de Mielina/ultraestrutura , Fibras Nervosas Mielinizadas/metabolismo , Fibras Nervosas Mielinizadas/ultraestrutura , Oligodendroglia/ultraestrutura , Isoformas de Proteínas , Ratos , Ratos Wistar , Receptores de Estrogênio/agonistas , Receptores de Estrogênio/análise , Transdução de Sinais/fisiologia , Frações Subcelulares/metabolismo , Frações Subcelulares/ultraestruturaRESUMO
Head-down bed rest (HDBR) is commonly considered as ground-based analog to spaceflight and simulates the headward fluid shift and cardiovascular deconditioning associated with spaceflight. We investigated in healthy volunteers whether HDBR, with or without countermeasures, affect cerebral autoregulation (CA). Twelve men (at selection: 34 ± 7 years; 176 ± 7 cm; 70 ± 7 kg) underwent three interventions of a 21-day HDBR: a control condition without countermeasure (CON), a condition with resistance vibration exercise (RVE) comprising of squats, single leg heel, and bilateral heel raises and a condition using also RVE associated with nutritional supplementation (NeX). Cerebral blood flow velocity was assessed using transcranial Doppler ultrasonography. CA was evaluated by transfer function analysis and by the autoregulatory index (Mxa) in order to determine the relationship between mean cerebral blood flow velocity and mean arterial blood pressure. In RVE condition, coherence was increased after HDBR. In CON condition, Mxa index was significantly reduced after HDBR. In contrast, in RVE and NeX conditions, Mxa were increased after HBDR. Our results indicate that HDBR without countermeasures may improve dynamic CA, but this adaptation may be dampened with RVE. Furthermore, nutritional supplementation did not enhance or worsen the negative effects of RVE. These findings should be carefully considered and could not be applied in spaceflight. Indeed, the subjects spent their time in supine position during bed rest, unlike the astronauts who perform normal daily activities.
RESUMO
Restricted and controlled drug delivery to the heart remains a challenge giving frequent off-target effects as well as limited retention of drugs in the heart. There is a need to develop and optimize tools to allow for improved design of drug candidates for treatment of heart diseases. Over the last decade, novel drug platforms and nanomaterials were designed to confine bioactive materials to the heart. Yet, the research remains in its infancy, not only in the development of tools but also in the understanding of effects of these materials on cardiac function and tissue integrity. Upconverting nanoparticles are nanomaterials that recently accelerated interest in theranostic nanomedicine technologies. Their unique photophysical properties allow for sensitive in vivo imaging that can be combined with spatio-temporal control for targeted release of encapsulated drugs. Here we synthesized upconverting NaYF4:Yb,Tm nanoparticles and show for the first time their innocuity in the heart, when injected in the myocardium or in the pericardial space in mice. Nanoparticle retention and upconversion in the cardiac region did not alter heart rate variability, nor cardiac function as determined over a 15-day time course ensuing the sole injection. Altogether, our nanoparticles show innocuity primarily in the pericardial region and can be safely used for controlled spatiotemporal drug delivery. Our results support the use of upconverting nanoparticles as potential theranostics tools overcoming some of the key limitations associated with conventional experimental cardiology.
Assuntos
Cardiopatias/diagnóstico , Cardiopatias/terapia , Nanopartículas/uso terapêutico , Nanomedicina Teranóstica , Animais , Peso Corporal , Cardiopatias/fisiopatologia , Testes de Função Cardíaca , Masculino , Camundongos Endogâmicos C57BL , Nanopartículas/ultraestruturaRESUMO
Dry immersion (DI) is used to simulate weightlessness. We investigated in healthy volunteers if DI induces changes in ONSD, as a surrogate marker of intracranial pressure (ICP) and how these changes could affect cerebral autoregulation (CA). Changes in ICP were indirectly measured by changes in optic nerve sheath diameter (ONSD). 12 healthy male volunteers underwent 3 days of DI. ONSD was indirectly assessed by ocular ultrasonography. Cerebral blood flow velocity (CBFV) of the middle cerebral artery was gauged using transcranial Doppler ultrasonography. CA was evaluated by two methods: (1) transfer function analysis was calculated to determine the relationship between mean CBFV and mean arterial blood pressure (ABP) and (2) correlation index Mxa between mean CBFV and mean ABP.ONSD increased significantly during the first day, the third day and the first day of recovery of DI (P < 0.001).DI induced a reduction in Mxa index (P < 0.001) and an elevation in phase shift in low frequency bandwidth (P < 0.05). After DI, Mxa and coherence were strongly correlated with ONSD (P < 0.05) but not before DI. These results indicate that 3 days of DI induces significant changes in ONSD most likely reflecting an increase in ICP. CA was improved but also negatively correlated with ONSD suggesting that a persistent elevation ICP favors poor CA recovery after simulated microgravity.
RESUMO
Eph receptors and their ephrin ligands play critical roles in the development of the nervous system, however, less is known about their functions in the adult brain. Here, we investigated the function of ephrinB1, an ephrinB family member that is mutated in CranioFrontoNasal Syndrome. We show that ephrinB1 deficient mice (EfnB1(Y/-)) demonstrate spared spatial learning and memory but exhibit exclusive impairment in non-spatial learning and memory tasks. We established that ephrinB1 does not control learning and memory through direct modulation of synaptic plasticity in adults, since it is not expressed in the adult brain. Rather we show that the cortex of EfnB1(Y/-) mice displayed supernumerary neurons, with a particular increase in calretinin-positive interneurons. Further, the increased neuron number in EfnB1(Y/-) mutants correlated with shorter dendritic arborization and decreased spine densities of cortical pyramidal neurons. Our findings indicate that ephrinB1 plays an important role in cortical maturation and that its loss has deleterious consequences on selective cognitive functions in the adult.
Assuntos
Córtex Cerebral/anormalidades , Córtex Cerebral/fisiopatologia , Anormalidades Craniofaciais/patologia , Anormalidades Craniofaciais/fisiopatologia , Aprendizagem/fisiologia , Envelhecimento/patologia , Animais , Comportamento Animal , Contagem de Células , Córtex Cerebral/patologia , Dendritos/metabolismo , Dendritos/patologia , Modelos Animais de Doenças , Efrina-B1/metabolismo , Interneurônios/metabolismo , Interneurônios/patologia , Masculino , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Células Piramidais/metabolismo , Células Piramidais/patologia , Sinapses/metabolismo , Sinapses/patologiaRESUMO
The erythropoietin-producing hepatocellular (Eph) receptors form the largest family of receptor tyrosine kinases. Upon interaction of the Eph receptors with their ligands the ephrins, signaling cascades are initiated downstream of both receptor and ligand, a feature known as bidirectional signaling. The Eph receptors and ephrin ligands mediate important roles in embryonic development, particularly in establishing tissue organization by mediating cell adhesion or cell repulsion. In several adult tissues, at least one Eph/ephrin pair is found to play critical roles in tissue physiology and homeostasis. In recent years numerous members of this family have gained considerable attention since changes in their expression levels are a typical feature in cancer cells. Despite the fact that Eph/ephrin developmental expression profiles are well documented, little is known on transcriptional and post-transcriptional mechanisms that permits their highly specific, graded, complementary or overlapping expression patterns. Therefore understanding the transcriptional and post-transcriptional mechanisms regulating Eph/ephrin expression has far-reaching significance in biology. This review provides an overview of the mechanisms regulating Eph/ephrin expression. We highlight important emerging mechanisms of Eph/ephrin regulation or misregulation such as epigenetics and miRNAs.
Assuntos
Efrinas/metabolismo , Receptores da Família Eph/metabolismo , Efrinas/genética , Epigenômica , Humanos , MicroRNAs/genética , Receptores da Família Eph/genéticaRESUMO
Eph receptors and ephrins exhibit complex and highly dynamic expression patterns during embryonic development. In addition, changes in their expression levels are often associated with pathological situations in adults. Yet, little is known about the mechanisms regulating their expression. Here we report that the expression of ephrin-B1 is controlled by a feedback loop involving posttranscriptional regulatory mechanisms. We observed that the EfnB1 3' untranslated region (3'-UTR) confers instability to mRNA transcripts, and we identified miR-124 as a posttranscriptional repressor of EfnB1 expression. Furthermore, we showed that miR-124 is itself regulated by ephrin-B1 reverse signaling, thus revealing the existence of a mutually repressive interaction between ephrin-B1 and this microRNA (miRNA). Lastly, we demonstrated the relevance of this mutual inhibition for neuronal differentiation. Our results suggest that miRNAs could be important effectors of Eph/ephrin signaling to refine domains of expression and to regulate function.