Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(23): e2207207, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36922728

RESUMO

In this study, a 96-well exposure system for safety assessment of nanomaterials is developed and characterized using an air-liquid interface lung epithelial model. This system is designed for sequential nebulization. Distribution studies verify the reproducible distribution over all 96 wells, with lower insert-to-insert variability compared to non-sequential application. With a first set of chemicals (TritonX), drugs (Bortezomib), and nanomaterials (silver nanoparticles and (non-)fluorescent crystalline nanocellulose), sequential exposure studies are performed with human lung epithelial cells followed by quantification of the deposited mass and of cell viability. The developed exposure system offers for the first time the possibility of exposing an air-liquid interface model in a 96-well format, resulting in high-throughput rates, combined with the feature for sequential dosing. This exposure system allows the possibility of creating dose-response curves resulting in the generation of more reliable cell-based assay data for many types of applications, such as safety analysis. In addition to chemicals and drugs, nanomaterials with spherical shapes, but also morphologically more complex nanostructures can be exposed sequentially with high efficiency. This allows new perspectives on in vivo-like and animal-free approaches for chemical and pharmaceutical safety assessment, in line with the 3R principle of replacing and reducing animal experiments.


Assuntos
Nanopartículas Metálicas , Humanos , Prata , Pulmão , Células Epiteliais , Bortezomib
2.
J Am Chem Soc ; 143(1): 420-432, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33347313

RESUMO

While a variety of compounds containing planar tetracoordinated carbon (ptC), the so-called anti-van't Hoff/Le Bel carbon, are known experimentally, stable systems containing planar tetracoordinated silicon (ptSi) are barely known. As part of our studies on the application of stereoelectronically well-defined transition-metal fragments to stabilize silicon in unprecedented bonding modes, we report herein the synthesis and full characterization of a series of thermally stable complexes of the general formula [Tp'(CO)2MSiC(R1)C(R2)M(CO)2Tp'] (M = Mo, W; R1 = R2 = Me or R1 = H, R2 = SiMe3, Ph; Tp' = κ3-N,N',N″-hydridotris(3,5-dimethylpyrazolyl)borate), which incorporate a ptSi atom in addition to two ptC atoms. The complexes were obtained by reacting the metallasilylidyne complexes [Tp'(CO)2M≡Si-M(CO)2(PMe3)Tp'] with alkynes R1C≡CR2 and were comprehensively analyzed by experimental studies and quantum chemical calculations. The analyses revealed that the ptSi atom is embedded in a tricyclic trapezoidal core featuring one internal SiC2 and two outer M-Si-C three-membered rings, which are fused via two Si-C bonds. The structural peculiarities evoked by the presence of an anti-van't Hoff/Le Bel ptSi center, such as the short M-Si bonds, a nearly linear M-Si-M spine, long M-C bonds, and the presence of two planar tetracoordinated carbon atoms were elucidated by a detailed analysis of the electronic structure, suggesting that one factor for the stabilization of the ptSi geometry is the aromaticity of the central SiC2 ring having two delocalized π electrons. Remarkably, the results further indicate the existence of both anti-van't Hoff/Le Bel carbon and silicon centers next to each other in the isolated complexes.

3.
Macromol Rapid Commun ; 41(4): e1900468, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31880037

RESUMO

Catalytic dehydropolymerization of halogen-functionalized phosphine-boranes (4-X-C6 H4 )PH2 ⋅BH3 (1a: X = Br, 1b: X = I) with [CpFe(CO)2 (OTf)] at 100 °C provides convenient access to halogen-functionalized polyphosphinoboranes [(4-X-C6 H4 )PH-BH2 ]n (2a: X = Br, 2b: X = I). These polymers are useful precursors for post-polymerization functionalization, which is demonstrated by Sonogashira coupling under mild conditions to yield the alkynyl-functionalized polyphosphinoborane [(4-PhCC-C6 H4 )PH-BH2 ]n (3).


Assuntos
Boranos/química , Halogênios/química , Fosfinas/química , Polímeros/química , Polímeros/síntese química , Alcinos/química , Catálise , Polimerização
4.
J Am Chem Soc ; 141(7): 2894-2899, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30726071

RESUMO

We describe a new class of inorganic polymeric materials featuring a main chain consisting of PV-O bonds and aryl side groups, which was obtained with >70 repeat units by ring-opening polymerization of cyclic phosphonates. This monomer-polymer system was found to be dynamic in solution enabling selective depolymerization under dilute conditions, which can be tuned by varying the substituents. The polymers show high thermal stability to weight loss and can be easily fabricated into self-standing thin films. Structural characterizations of the cyclic 6- and 12-membered ring precursors are also described.

5.
J Am Chem Soc ; 140(23): 7187-7198, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29730935

RESUMO

A detailed experimental and theoretical analysis is presented of unprecedented molybdenum complexes featuring a linearly coordinated, multiply bonded silicon atom. Reaction of SiBr2(SIdipp) (SIdipp = C[N(C6H3-2,6- iPr2)CH2]2) with Na[Tp'Mo(CO)2(PMe3)] (Na-1) in the ratio 1:2 afforded the reddish-brown metallasilylidyne complex [Tp'(CO)2Mo≡Si-Mo(CO)2(PMe3)Tp'] (Tp' = κ3- N, N', N″-hydridotris(3,5-dimethylpyrazolyl)borate) (2), in which an almost linearly coordinated silicon atom (∠(Mo1-Si-Mo2) = 162.93(7)°) is bridging the 15VE metal fragment Tp'Mo(CO)2 with the 17VE metal fragment Tp'Mo(CO)2(PMe3) via a short Mo1-Si bond (2.287(2) Å) and a considerably longer Mo2-Si bond (2.438(2) Å), respectively. The reddish-orange silylidyne complex [Tp'(CO)2Mo≡Si-Tbb] (3) was also prepared from Na-1 and the 1,2-dibromodisilene ( E)-Tbb(Br)Si═Si(Br)Tbb (Tbb = C6H2-2,6-[CH(SiMe3)2]2-4- tBu) and contains as 2 a short Mo-Si bond (2.2614(9) Å) to an almost linearly coordinated Si atom (∠(Mo-Si-CTbb) = 160.8(1)°). Cyclic voltammetric studies of 2 in diglyme revealed an irreversible reduction of 2 at -1.907 V vs the [Fe(η5-C5Me5)2]+/0 redox couple. Two-electron reduction of 2 with potassium graphite yielded selectively the 1,3-dimetalla-2-silaallene dianion [Tp'(CO)2Mo═Si═Mo(CO)2Tp']2- (42-), which was isolated as the bright yellow dipotassium salt [K(diglyme)]2-4. Single crystal X-ray diffraction analysis revealed a centrosymmetric structure of 42-. The Mo-Si bond length of 42- (2.3494(2) Å) compares well with those of Mo-Si double bonds and lies in-between the Mo1-Si triple bond and Mo2-Si single bond length of 2. Compounds 2, 3 and [K(diglyme)2]-4 were characterized by elemental analyses, IR and multinuclear NMR spectroscopy. Comparative ELF (electron localization function), NBO (natural bond orbital) and NRT (natural resonance theory) analyses of 2, 3 and 42- shed light into the electronic structures of these compounds.

6.
J Am Chem Soc ; 138(13): 4589-600, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-26978031

RESUMO

Protonation and alkylation of (Idipp)Si═Si(Idipp) (1) afforded the mixed-valent disilicon(I)-borates [(Idipp)(R)Si(II)═Si(0)(Idipp)][B(Ar(F))4] (1R[B(Ar(F))4]; R = H, Me, Et; Ar(F) = C6H3-3,5-(CF3)2; Idipp = C[N(C6H3-2,6-iPr2)CH]2) as red to orange colored, highly air-sensitive solids, which were characterized by single-crystal X-ray diffraction, IR spectroscopy and multinuclear NMR spectroscopy. Dynamic NMR studies in solution revealed a degenerate isomerization (topomerization) of the "σ-bonded" tautomers of 1H[B(Ar(F))4], which proceeds according to quantum chemical calculations via a NHC-stabilized (NHC = N-heterocyclic carbene) disilahydronium ion ("π-bonded" isomer) and is reminiscent of the degenerate rearrangement of carbenium ions formed upon protonation of olefins. The topomerization of 1H[B(Ar(F))4] provides the first example of a reversible 1,2-H migration along a Si═Si bond observed in a molecular system. In contrast, 1Me[B(Ar(F))4] adopts a "rigid" structure in solution due to the higher energy required for the interconversion of the "σ-bonded" isomer into a putative NHC-stabilized disilamethonium ion. Addition of alkali metal borates to 1 afforded the alkali metal disilicon(0) borates 1M[BAr4] (M = Li, Ar = C6F5; M = Na, Ar = Ar(F)) as brown, air-sensitive solids. Single-crystal X-ray diffraction analyses and NMR spectroscopic studies of 1M[BAr4] suggest in concert with quantum chemical calculations that encapsulation of the alkali metal cations in the cavity of 1 predominantly occurs via electrostatic cation-π interactions with the Si═Si π-bond and the peripheral NHC aryl rings. Displacement of the [Si(NHC)] fragments by the isolobal fragments [PR] and [SiR](-) interrelates the cations [(NHC)(R)Si═Si(NHC)](+) to a series of familiar, multiply bonded Si and P compounds as verified by analyses of their electronic structures.

7.
Chemistry ; 21(35): 12509-16, 2015 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-26246231

RESUMO

One-electron oxidation of the disilicon(0) compound Si2(Idipp)2 (1, Idipp = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene) with [Fe(C5Me5)2][B(Ar(F))4] (Ar(F) = C6H3-3,5-(CF3)2) affords selectively the green radical salt [Si2(Idipp)2][B(Ar(F))4] (1-[B(Ar(F))4). Oxidation of the centrosymmetric 1 occurs reversibly at a low redox potential (E1/2 = -1.250 V vs. Fc(+)/Fc), and is accompanied by considerable structural changes as shown by single-crystal X-ray structural analysis of 1-B(Ar(F))4. These include a shortening of the Si-Si bond, a widening of the Si-Si-CNHC angles, and a lowering of the symmetry, leading to a quite different conformation of the NHC substituents at the two inequivalent Si sites in 1(+). Comparative quantum chemical calculations of 1 and 1(+) indicate that electron ejection occurs from the symmetric (n+) combination of the Si lone pairs (HOMO). EPR studies of 1-B(Ar(F))4 in frozen solution verified the inequivalency of the two Si sites observed in the solid-state, and point in agreement with the theoretical results to an almost equal distribution of the spin density over the two Si atoms, leading to quite similar (29)Si hyperfine coupling tensors in 1(+). EPR studies of 1-B(Ar(F))4 in liquid solution unraveled a topomerization with a low activation barrier that interconverts the two Si sites in 1(+).

8.
Angew Chem Int Ed Engl ; 54(34): 9980-5, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26136260

RESUMO

An efficient two-step synthesis of the first NHC-stabilized disilavinylidene (Z)-(SIdipp)Si=Si(Br)Tbb (2; SIdipp=C[N(C6H3-2,6-iPr2)CH2]2, Tbb=C6H2-2,6-[CH(SiMe3)2]2-4-tBu, NHC=N-heterocyclic carbene) is reported. The first step of the procedure involved a 2:1 reaction of SiBr2(SIdipp) with the 1,2-dibromodisilene (E)-Tbb(Br)Si=Si(Br)Tbb at 100 °C, which afforded selectively an unprecedented NHC-stabilized bromo(silyl)silylene, namely SiBr(SiBr2Tbb)(SIdipp) (1). Alternatively, compound 1 could be obtained from the 2:1 reaction of SiBr2(SIdipp) with LiTbb at low temperature. 1 was then selectively reduced with C8K to give the NHC-stabilized disilavinylidene 2. Both low-valent silicon compounds were comprehensively characterized by X-ray diffraction analysis, multinuclear NMR spectroscopy, and elemental analyses. Additionally, the electronic structure of 2 was studied by various quantum-chemical methods.

9.
Angew Chem Int Ed Engl ; 54(9): 2739-44, 2015 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-25600317

RESUMO

An experimental and theoretical study of the first compound featuring a Si=P bond to a two-coordinate silicon atom is reported. The NHC-stabilized phosphasilenylidene (IDipp)Si=PMes* (IDipp=1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene, Mes*=2,4,6-tBu3 C6 H2 ) was prepared by SiMe3 Cl elimination from SiCl2 (IDipp) and LiP(Mes*)SiMe3 and characterized by X-ray crystallography, NMR spectroscopy, cyclic voltammetry, and UV/Vis spectroscopy. It has a planar trans-bent geometry with a short Si=P distance of 2.1188(7)Å and acute bonding angles at Si (96.90(6)°) and P (95.38(6)°). The bonding parameters indicate the presence of a Si=P bond with a lone electron pair of high s-character at Si and P, in agreement with natural bond orbital (NBO) analysis. Comparative cyclic voltammetric and UV/Vis spectroscopic experiments of this compound, the disilicon(0) compound (IDipp)Si=Si(IDipp), and the diphosphene Mes*P=PMes* reveal, in combination with quantum chemical calculations, the isolobal relationship of the three double-bond systems.

10.
Nat Commun ; 10(1): 1370, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30914640

RESUMO

The divalent carbene carbon centre in cyclic (alkyl)(amino)carbenes (CAACs) is known to exhibit transition-metal-like insertion into E-H σ-bonds (E = H, N, Si, B, P, C, O) with formation of new, strong C-E and C-H bonds. Although subsequent transformations of the products represent an attractive strategy for metal-free synthesis, few examples have been reported. Herein we describe the dehydrogenation of phosphine-boranes, RR'PH·BH3, using a CAAC, which behaves as a stoichiometric hydrogen acceptor to release monomeric phosphinoboranes, [RR'PBH2], under mild conditions. The latter species are transient intermediates that either polymerise to the corresponding polyphosphinoboranes, [RR'PBH2]n (R = Ph; R' = H, Ph or Et), or are trapped in the form of CAAC-phosphinoborane adducts, CAAC·H2BPRR' (R = R' = tBu; R = R' = Mes). In contrast to previously established methods such as transition metal-catalysed dehydrocoupling, which only yield P-monosubstituted polymers, [RHPBH2]n, the CAAC-mediated route also provides access to P-disubstituted polymers, [RR'PBH2]n (R = Ph; R' = Ph or Et).

11.
Chem Commun (Camb) ; 53(85): 11701-11704, 2017 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-29022601

RESUMO

The first high molar mass polyaminoboranes with an organic substituent at boron, namely the B-arylated polyaminoboranes [NH2-BHPh]n (2a) and [NH2-BH(p-CF3C6H4)]n (2b), have been prepared via catalytic dehydropolymerisation. These materials can be considered as inorganic analogues of polystyrene with a B-N main chain. Their synthesis was achieved from B-aryl amine-borane precursors in solution using an [IrH2(POCOP)] precatalyst.

12.
Chem Sci ; 7(8): 4973-4979, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30155147

RESUMO

Cyclic voltammetric studies of the hydridodisilicon(0,II) borate [(Idipp)(H)SiII[double bond, length as m-dash]Si0(Idipp)][B(ArF)4] (1H[B(ArF)4], Idipp = C[N(C6H3-2,6-iPr2)CH]2, ArF = C6H3-3,5-(CF3)2) reveal a reversible one-electron reduction at a low redox potential (E 1/2 = -2.15 V vs. Fc+/Fc). Chemical reduction of 1H[B(ArF)4] with KC8 affords selectively the green, room-temperature stable mixed-valent disilicon(0,I) hydride Si2(H)(Idipp)2 (1H), in which the highly reactive Si2H molecule is trapped between two N-heterocyclic carbenes (NHCs). The molecular and electronic structure of 1H was investigated by a combination of experimental and theoretical methods and reveals the presence of a π-type radical featuring a terminal bonded H atom at a flattened trigonal pyramidal coordinated Si center, that is connected via a Si-Si bond to a bent two-coordinated Si center carrying a lone pair of electrons. The unpaired electron occupies the Si[double bond, length as m-dash]Si π* orbital leading to a formal Si-Si bond order of 1.5. Extensive delocalization of the spin density occurs via conjugation with the coplanar arranged NHC rings with the higher spin density lying on the site of the two-coordinated silicon atom.

13.
Chem Sci ; 6(11): 6515-6524, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30090270

RESUMO

An efficient method for the synthesis of the NHC-stabilised Si(i) halides Si2X2(Idipp)2 (2-X, X = Cl, Br, I; Idipp = C[N(C6H3-2,6-iPr2)CH]2) was developed, which involves the oxidation of Si2(Idipp)2 (1) with 1,2-dihaloethanes. Halogenation of 1 is a diastereoselective reaction leading exclusively to a racemic mixture of the RR and SS enantiomers of 2-X. Compounds 2-Br and 2-I were characterised by single-crystal X-ray crystallography and multinuclear NMR spectroscopy, and their electronic structures were analysed by quantum chemical methods. Dynamic NMR spectroscopy unraveled a fluxional process of 2-Br and 2-I in solution, which involved a hindered rotation of the NHC groups about the Si-CNHC bonds. Iodide abstraction from 2-I by [Li(Et2O)2.5][B(C6F5)4] selectively afforded the disilicon(i) salt [Si2(I)(Idipp)2][B(C6F5)4] (3). X-ray crystallography and variable-temperature NMR spectroscopy of 3 in combination with quantum chemical calculations shed light on the ground-state geometric and electronic structure of the [Si2(I)(Idipp)2]+ ion, which features a Si[double bond, length as m-dash]Si bond between a trigonal planar coordinated SiII atom with a Si-I bond and a two-coordinate Si0 center carrying a lone pair of electrons. The dynamics of the [Si2(I)(Idipp)2]+ ion were studied in solution by variable-temperature NMR spectroscopy and they involve a topomerisation, which proceeds according to quantum theory via a disilaiodonium intermediate ("π-bonded" isomer) and exchanges the two heterotopic Si sites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA