Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 175(7): 1946-1957.e13, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30415839

RESUMO

Directed evolution is a powerful approach for engineering biomolecules and understanding adaptation. However, experimental strategies for directed evolution are notoriously labor intensive and low throughput, limiting access to demanding functions, multiple functions in parallel, and the study of molecular evolution in replicate. We report OrthoRep, an orthogonal DNA polymerase-plasmid pair in yeast that stably mutates ∼100,000-fold faster than the host genome in vivo, exceeding the error threshold of genomic replication that causes single-generation extinction. User-defined genes in OrthoRep continuously and rapidly evolve through serial passaging, a highly straightforward and scalable process. Using OrthoRep, we evolved drug-resistant malarial dihydrofolate reductases (DHFRs) in 90 independent replicates. We uncovered a more complex fitness landscape than previously realized, including common adaptive trajectories constrained by epistasis, rare outcomes that avoid a frequent early adaptive mutation, and a suboptimal fitness peak that occasionally traps evolving populations. OrthoRep enables a new paradigm of routine, high-throughput evolution of biomolecular and cellular function.


Assuntos
Adaptação Fisiológica/genética , Genoma Fúngico , Modelos Genéticos , Taxa de Mutação , Saccharomyces cerevisiae/genética , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
ACS Synth Biol ; 9(6): 1270-1276, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32374988

RESUMO

We present automated continuous evolution (ACE), a platform for the hands-free directed evolution of biomolecules. ACE pairs OrthoRep, a genetic system for continuous targeted mutagenesis of user-selected genes in vivo, with eVOLVER, a scalable and automated continuous culture device for precise, multiparameter regulation of growth conditions. By implementing real-time feedback-controlled tuning of selection stringency with eVOLVER, genes of interest encoded on OrthoRep autonomously traversed multimutation adaptive pathways to reach desired functions, including drug resistance and improved enzyme activity. The durability, scalability, and speed of biomolecular evolution with ACE should be broadly applicable to protein engineering as well as prospective studies on how selection parameters and schedules shape adaptation.


Assuntos
Evolução Molecular Direcionada/métodos , Saccharomyces cerevisiae/metabolismo , Algoritmos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mutagênese , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Thermotoga maritima/metabolismo
3.
ACS Synth Biol ; 7(7): 1722-1729, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-29969238

RESUMO

The yeast cytoplasmically localized pGKL1/TP-DNAP1 plasmid/DNA polymerase pair forms an orthogonal DNA replication system whose mutation rate can be drastically increased without influencing genomic replication, thereby supporting in vivo continuous evolution. Here, we report that the pGKL2/TP-DNAP2 plasmid/DNA polymerase pair forms a second orthogonal replication system. We show that custom genes can be encoded and expressed from pGKL2, that error-prone TP-DNAP2s can be engineered, and that pGKL2 replication by TP-DNAP2 is both orthogonal to genomic replication in Saccharomyces cerevisiae and mutually orthogonal with pGKL1 replication by TP-DNAP1. This demonstration of two mutually orthogonal DNA replication systems with tunable error rates and properties should enable new applications in cell-based continuous evolution, genetic recording, and synthetic biology at large.


Assuntos
Replicação do DNA/fisiologia , DNA Polimerase Dirigida por DNA/metabolismo , Replicação do DNA/genética , DNA Polimerase Dirigida por DNA/genética , Engenharia Metabólica/métodos , Plasmídeos/genética
4.
BMC Syst Biol ; 10(1): 40, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27266508

RESUMO

BACKGROUND: The mechanistic description of enzyme kinetics in a dynamic model of metabolism requires specifying the numerical values of a large number of kinetic parameters. The parameterization challenge is often addressed through the use of simplifying approximations to form reaction rate laws with reduced numbers of parameters. Whether such simplified models can reproduce dynamic characteristics of the full system is an important question. RESULTS: In this work, we compared the local transient response properties of dynamic models constructed using rate laws with varying levels of approximation. These approximate rate laws were: 1) a Michaelis-Menten rate law with measured enzyme parameters, 2) a Michaelis-Menten rate law with approximated parameters, using the convenience kinetics convention, 3) a thermodynamic rate law resulting from a metabolite saturation assumption, and 4) a pure chemical reaction mass action rate law that removes the role of the enzyme from the reaction kinetics. We utilized in vivo data for the human red blood cell to compare the effect of rate law choices against the backdrop of physiological flux and concentration differences. We found that the Michaelis-Menten rate law with measured enzyme parameters yields an excellent approximation of the full system dynamics, while other assumptions cause greater discrepancies in system dynamic behavior. However, iteratively replacing mechanistic rate laws with approximations resulted in a model that retains a high correlation with the true model behavior. Investigating this consistency, we determined that the order of magnitude differences among fluxes and concentrations in the network were greatly influential on the network dynamics. We further identified reaction features such as thermodynamic reversibility, high substrate concentration, and lack of allosteric regulation, which make certain reactions more suitable for rate law approximations. CONCLUSIONS: Overall, our work generally supports the use of approximate rate laws when building large scale kinetic models, due to the key role that physiologically meaningful flux and concentration ranges play in determining network dynamics. However, we also showed that detailed mechanistic models show a clear benefit in prediction accuracy when data is available. The work here should help to provide guidance to future kinetic modeling efforts on the choice of rate law and parameterization approaches.


Assuntos
Enzimas/metabolismo , Modelos Biológicos , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA