Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 142(35): 14814-14819, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32809808

RESUMO

Negatively curved nanographene (NG) 4, having two heptagons and a [5]helicene, was unexpectedly obtained by aryl rearrangement and stepwise cyclodehydrogenations. X-ray crystallography confirmed the saddle-shaped structures of intermediate 3 and NG 4. The favorability of rearrangement over helicene formation following radical cation or arenium cation mechanisms is supported by theoretical calculations. NG 4 demonstrates a reversible mechanochromic color change and solid-state emission, presumably benefiting from its loose crystal packing. After resolution by chiral high-performance liquid chromatography, the circular dichroism spectra of enantiomers 4-(P) and 4-(M) were measured and showed moderate Cotton effects at 350 nm (|Δε| = 148 M-1 cm-1).

2.
J Am Chem Soc ; 141(25): 9832-9836, 2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31184481

RESUMO

A simple deoxygenation reagent prepared in situ from commercially available Mo(CO)6 and ortho-quinone has been developed for the synthesis of indoline and indole derivatives. The Mo/quinone complex efficiently deoxygenates carbonyl compounds bearing a neighboring dialkylamino group and effects intramolecular cyclizations with the insertion of a deoxygenated carbonyl carbon into a C(sp3)-H bond, in which a carbonyl group acts as a carbene equivalent. The reaction also proceeds with a catalytic amount of Mo/quinone in the presence of disilane as an oxygen atom acceptor.

3.
J Am Chem Soc ; 140(45): 15425-15429, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30347153

RESUMO

Cyclopropanation of alkenes is a well-established textbook reaction for the synthesis of cyclopropanes, where a "high-energy" carbene species is exploited to drive the reaction forward. However, little attention has been focused toward molecular transformations involving the reverse reaction, retro-cyclopropanation (RC). This is because of difficulties associated with both cleaving the two geminal C-C single bonds and exploiting the generated carbenes for further transformations in an efficient and selective manner. Here, we report that a molybdenum-based catalytic system overcomes the above challenges and effects the RC of cyclopropanes bearing a pyridyl group with the release of ethylene (alkene) and the subsequent intramolecular cyclization leading to pyrido[2,1- a]isoindoles. The reaction allows for the uncommon use of cyclopropanes as C1 synthetic units in contrast to most conventional reactions in which cyclopropanes are used as C3 synthetic units. We anticipate that this new strategy will pave the way for C1 cyclopropane chemistry.

4.
Chemistry ; 23(45): 10861-10870, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28557136

RESUMO

Stoichiometric amounts of oxidants are widely used as promoters (hydrogen acceptors) in dehydrogenative silylation of C-H bonds. However, the present study demonstrates that silylative and germylative cyclization with dehydrogenation can proceed efficiently, even without hydrogen acceptors. The combination of [RhCl(cod)]2 and PPh3 was effective for both transformations, and allowed a reduction in reaction temperature compared with our previous report. Monitoring of the reactions revealed that both transformations had an induction period for the early stage, and that the rate constant of dehydrogenative germylation was greater than that of dehydrogenative silylation. Competitive reactions in the presence of 3,3-dimethyl-1-butene indicated that the ratio of dehydrogenative metalation and hydrometalation was affected by reaction temperature when a hydrosilane or hydrogermane precursor was used. Further mechanistic insights of oxidant-free dehydrogenative silylation, including the origin of these unique reactivities, were obtained by density functional theory studies.

5.
J Am Chem Soc ; 136(41): 14349-52, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25268693

RESUMO

We report here that an iron-catalyzed directed C-H functionalization reaction allows the coupling of a variety of aromatic, heteroaromatic, and olefinic substrates with alkenyl and aryl boron compounds under mild oxidative conditions. We rationalize these results by the involvement of an organoiron(III) reactive intermediate that is responsible for the C-H bond-activation process. A zinc salt is crucial to promote the transfer of the organic group from the boron atom to the iron(III) atom.

6.
J Am Chem Soc ; 136(38): 13126-9, 2014 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-25032786

RESUMO

Alkenes, arenes, and heteroarenes possessing an 8-quinolylamide group as the directing group are alkylated with primary and secondary alkyl tosylates, mesylate, and halides in the presence of Fe(acac)3/diphosphine as a catalyst and ArZnBr as a base. The reaction proceeds stereospecifically for alkene substrates and takes place without loss of regiochemical integrity of the starting secondary tosylate, but with loss of the stereochemistry of the chiral center.

7.
J Am Chem Soc ; 136(2): 646-9, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24380435

RESUMO

Arenes possessing an 8-quinolinylamide group as a directing group are ortho aminated with N-chloroamines and N-benzoyloxyamines in the presence of an iron/diphosphine catalyst and an organometallic base to produce anthranilic acid derivatives in high yield. The reaction proceeds via iron-catalyzed C-H activation, followed by the reaction of the resulting iron intermediate with N-chloroamine. The choice of the directing group and diphosphine ligand is crucial for obtaining the anthranilic acid derivative with high yield and product selectivity.


Assuntos
Amidas/química , Cloraminas/química , Compostos Férricos/química , ortoaminobenzoatos/síntese química , Aminação , Catálise , Estrutura Molecular , ortoaminobenzoatos/química
8.
Nat Commun ; 15(1): 2886, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632241

RESUMO

Exploitation of noncovalent interactions for recognition of an organic substrate has received much attention for the design of metal catalysts in organic synthesis. The CH-π interaction is especially of interest for molecular recognition because both the C-H bonds and the π electrons are fundamental properties of organic molecules. However, because of their weak nature, these interactions have been less utilized for the control of organic reactions. We show here that the CH-π interaction can be used to kinetically accelerate catalytic C-H activation of arenes by directly recognizing the π-electrons of the arene substrates with a spirobipyridine ligand. Computation and a ligand kinetic isotope effect study provide evidence for the CH-π interaction between the ligand backbone and the arene substrate. The rational exploitation of weak noncovalent interactions between the ligand and the substrate will open new avenues for ligand design in catalysis.

9.
Nat Commun ; 15(1): 1910, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429274

RESUMO

On-surface synthesis relies on carefully designed molecular precursors that are thermally activated to afford desired, covalently coupled architectures. Here, we study the intramolecular reactions of vinyl groups in a poly-para-phenylene-based model system and provide a comprehensive description of the reaction steps taking place on the Au(111) surface under ultrahigh vacuum conditions. We find that vinyl groups successfully cyclize with the phenylene rings in the ortho positions, forming a dimethyl-dihydroindenofluorene as the repeating unit, which can be further dehydrogenated to a dimethylene-dihydroindenofluorene structure. Interestingly, the obtained polymer can be transformed cleanly into thermodynamically stable polybenzo[k]tetraphene at higher temperature, involving a previously elusive pentagon-to-hexagon transformation via ring opening and rearrangement on a metal surface. Our insights into the reaction cascade unveil fundamental chemical processes involving vinyl groups on surfaces. Because the formation of specific products is highly temperature-dependent, this innovative approach offers a valuable tool for fabricating complex, low-dimensional nanostructures with high precision and yield.

10.
J Am Chem Soc ; 135(47): 17755-7, 2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24215539

RESUMO

Arenes possessing an N-(quinolin-8-yl)amide directing group are ortho-allylated with allyl phenyl ether in the presence of an iron/diphosphine catalyst and an organometallic base at 50-70 °C. The reaction proceeds via fast iron-catalyzed C-H activation, followed by reaction of the resulting iron intermediate with the allyl ether in γ-selective fashion.


Assuntos
Compostos Alílicos/química , Amidas/química , Ferro/química , Éteres Fenílicos/química , Quinolinas/química , Catálise , Fosfinas/química
11.
Science ; 375(6581): 658-663, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35143323

RESUMO

Regioselective functionalization of arenes remains a challenging problem in organic synthesis. Steric interactions are often used to block sites adjacent to a given substituent, but they do not distinguish the remaining remote sites. We report a strategy based on remote steric control, whereby a roof-like ligand protects the distant para site in addition to the ortho sites, and thereby enables selective activation of meta carbon-hydrogen (C-H) bonds in the absence of ortho or para substituents. We demonstrate this concept for iridium-catalyzed meta-selective borylation of various monosubstituted arenes, including complex drug molecules. This strategy has the potential to expand the toolbox of C-H bond functionalization to previously nondifferentiable reaction sites.

12.
Org Lett ; 24(39): 7242-7246, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36166349

RESUMO

In the presence of triphenylphosphine as a mild reductant, the use of catalytic amounts of Mo(CO)6 and an ortho-quinone ligand enables the intermolecular reductive coupling of aromatic aldehydes and the intramolecular coupling of aromatic ketones to produce functionalized alkenes. Diaryl- and diheteroaryl alkenes are synthesized with high (E)-selectivity and a tolerance toward bromide, iodide, and steric hindrance. Intramolecular coupling of dicarbonyl compounds under similar conditions affords mono- and disubstituted phenanthrenes.

13.
J Am Chem Soc ; 133(20): 7672-5, 2011 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-21524107

RESUMO

The reaction of an aryl Grignard reagent with a cyclic or acyclic olefin possessing a directing group such as pyridine or imine results in the stereospecific substitution of the olefinic C-H bond syn to the directing group. The reaction takes place smoothly and without isomerization of the product olefin in the presence of a mild oxidant (1,2-dichloro-2-methylpropane) and an aromatic cosolvent. Several lines of evidence suggest that the reaction proceeds via iron-catalyzed olefinic C-H bond activation rather than an oxidative Mizoroki-Heck-type reaction.

14.
Commun Chem ; 4(1): 76, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-36697639

RESUMO

With sodium being the most abundant alkali metal on Earth, organosodium compounds are an attractive choice for sustainable chemical synthesis. However, organosodium compounds are rarely used-and are overshadowed by organolithium compounds-because of a lack of convenient and efficient preparation methods. Here we report a halogen-sodium exchange method to prepare a large variety of (hetero)aryl- and alkenylsodium compounds including tri- and tetrasodioarenes, many of them previously inaccessible by other methods. The key discovery is the use of a primary and bulky alkylsodium lacking ß-hydrogens, which retards undesired reactions, such as Wurtz-Fittig coupling and ß-hydrogen elimination, and enables efficient halogen-sodium exchange. The alkylsodium is readily prepared in situ from neopentyl chloride and an easy-to-handle sodium dispersion. We believe that the efficiency, generality, and convenience of the present method will contribute to the widespread use of organosodium in organic synthesis, ultimately contributing to the development of sustainable organic synthesis by rivalling the currently dominant organolithium reagents.

15.
Chem Asian J ; 6(11): 3059-65, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-21898839

RESUMO

Direct arylation of the ortho-C-H bond of an aryl pyridine or an aryl imine with an aryl Grignard reagent has been achieved by using an iron-diamine catalyst and a dichloroalkane as an oxidant in a short reaction time (e.g., 5 min) under mild conditions (0 °C). The use of an aromatic co-solvent, such as chlorobenzene and benzene, and slow addition of the Grignard reagent are essential for the high efficiency of the reaction. The present arylation reaction has distinct merits over the previously developed reaction that used an arylzinc reagent, such as its reaction rate and atom economy. Selective C-H bond activation occurs in the presence of a leaving group, such as a tosyloxy, chloro, and bromo group. Studies on a stoichiometric reaction and kinetic isotope effects shed light on the reaction intermediate and the C-H bond-activation step.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA