RESUMO
Anti-microbial resistance (AMR) is one of the greatest threats to global health. The continual battle between the emergence of AMR and the development of drugs will be extremely difficult to stop as long as traditional anti-biotic approaches are taken. In order to overcome this impasse, we here focused on the type III secretion system (T3SS), which is highly conserved in many Gram-negative pathogenic bacteria. The T3SS is known to be indispensable in establishing disease processes but not essential for pathogen survival. Therefore, T3SS inhibitors may be innovative anti-infective agents that could dramatically reduce the evolutionary selective pressure on strains resistant to treatment. Based on this concept, we previously identified a polyketide natural product, aurodox (AD), as a specific T3SS inhibitor using our original screening system. However, despite its promise as a unique anti-infective drug of AD, the molecular target of AD has remained unclear. In this paper, using an innovative chemistry and genetic biology-based approach, we show that AD binds to adenylosuccinate synthase (PurA), which suppresses the production of the secreted proteins from T3SS, resulting in the expression of bacterial virulence both in vitro and in vivo experiments. Our findings illuminate the potential of PurA as a target of anti-infective drugs and vaccination and could open a avenue for application of PurA in the regulation of T3SS.
Assuntos
Aurodox , Sistemas de Secreção Tipo III , Sistemas de Secreção Tipo III/metabolismo , Aurodox/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias Gram-Negativas/metabolismo , Proteínas de Bactérias/metabolismoRESUMO
KSP-1007 is a novel bicyclic boronate-based broad-spectrum ß-lactamase inhibitor and is being developed in combination with meropenem (MEM) for the treatment of infections caused by carbapenem-resistant Gram-negative bacteria, a global health concern, and here, we describe its characteristics. KSP-1007 exhibited low apparent inhibition constant (Ki app) values against all classes of ß-lactamase, including imipenemase types and oxacillinase types from Acinetobacter baumannii. Against 207 Enterobacterales and 55 A. baumannii, including carbapenemase producers, KSP-1007 at fixed concentrations of 4, 8, and 16 µg/mL dose-dependently potentiated the in vitro activity of MEM in broth microdilution MIC testing. The MIC90 of MEM/KSP-1007 at 8 µg/mL against Enterobacterales was lower than those of MEM/vaborbactam, ceftazidime/avibactam, imipenem/relebactam, and colistin and similar to those of aztreonam/avibactam, cefiderocol, and tigecycline. The in vitro activity of MEM/KSP-1007 at ≥4 µg/mL against Enterobacterales harboring metallo-ß-lactamase was superior to that of cefepime/taniborbactam. MEM/KSP-1007 showed excellent activity against Escherichia coli with PBP3 mutations and New Delhi metallo-ß-lactamase compared to aztreonam/avibactam, cefepime/taniborbactam, and cefiderocol. MEM/KSP-1007 at 8 µg/mL showed greater efficacy against A. baumannii than these comparators except for cefiderocol, tigecycline, and colistin. A 2-fold reduction in MEM MIC against 96 Pseudomonas aeruginosa was observed in combination with KSP-1007. MEM/KSP-1007 demonstrated bactericidal activity against carbapenemase-producing Enterobacterales, A. baumannii, and P. aeruginosa based on minimum bactericidal concentration/MIC ratios of ≤4. KSP-1007 enhanced the in vivo activity of MEM against carbapenemase-producing Enterobacterales, A. baumannii, and P. aeruginosa in murine systemic, complicated urinary tract, and thigh infection models. Collectively, MEM/KSP-1007 has a good profile for treating carbapenem-resistant Gram-negative bacterial infections.
RESUMO
Previously, we successfully introduced laeA gene into a fungal strain in order to significantly increase the production of a bioactive compound, allowing use to discover novel biological activity. To demonstrate the universal applicability of the laeA gene introduction strategy for taping the potential of fungal secondary metabolism, in this present study, we created a library of microorganisms which we had the laeA gene inserted, and from that library we aimed to isolate compounds which are produced at significantly greater quantities compared to the respective wild type strains. From this investigation, we were able to isolate sclerotinin A (1) from Pochonia sp. KTF-0504 strain. We revealed that 1 showed anti-malarial activity against Plasmodium falciparum parasite strains. On the other hands, 1 showed no anti-fungal activity against multidrug-sensitive budding yeast. Our study implies that the utilization of the laeA gene in fungi is a versatile method for the discovery of drug candidates.
Assuntos
Antimaláricos , Plasmodium falciparum , Antimaláricos/farmacologia , Antimaláricos/química , Antimaláricos/isolamento & purificação , Plasmodium falciparum/efeitos dos fármacos , Metabolismo Secundário , Estrutura Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Testes de Sensibilidade Parasitária , Hypocreales/metabolismo , Hypocreales/química , Relação Dose-Resposta a Droga , Relação Estrutura-AtividadeRESUMO
Actinomycetes are prolific producers of natural products, particularly antibiotics. However, a significant proportion of its biosynthetic gene clusters (BGCs) remain silent under typical laboratory conditions. This limits the effectiveness of conventional isolation methods for the discovery of novel natural products. Genetic interventions targeting the activation of silent gene clusters are necessary to address this challenge. Streptomyces antibiotic regulatory proteins (SARPs) act as cluster-specific activators and can be used to target silent BGCs for the discovery of new antibiotics. In this study, the expression of a previously uncharacterized SARP protein, Syo_1.56, in Streptomyces sp. RK18-A0406 significantly enhanced the production of known antimycins and led to the discovery of 12 elasnins (1-12), 10 of which were novel. The absolute stereochemistry of elasnin A1 was assigned for the first time to be 6S. Unexpectedly, Syo_1.56 seems to function as a pleiotropic rather than cluster-specific SARP regulator, with the capability of co-regulating two distinct biosynthetic pathways, simultaneously. All isolated elasnins were active against wild-type and methicillin-resistant Staphylococcus aureus with IC50 values of 0.5-20 µg/mL, some of which (elasnins A1, B2, and C1 and proelasnins A1, and C1) demonstrated moderate to strong antimalarial activities against Plasmodium falciparum 3D7. Elasnins A1, B3, and C1 also showed in vitro inhibition of the metallo-ß-lactamase responsible for the development of highly antibiotic-resistant bacterial strains.
Assuntos
Antibacterianos , Streptomyces , Antibacterianos/farmacologia , Antibacterianos/química , Streptomyces/química , Streptomyces/genética , Família Multigênica , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Estrutura Molecular , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacosRESUMO
We found that the culture broth of fungi showed anti-fungal activity against multidrug-sensitive budding yeast. However, we could not identify the anti-fungal compound due to the small quantity. Therefore, we attempted to increase the productivity of the target compound by the introduction of a global secondary metabolism regulator, laeA to the strain, which led to the successful isolation of 10-folds greater amount of MS-347a (1) than Aspergillus sp. FKI-5362. Compound 1 was not effective against Candida albicans and the detailed anti-fungal activity of 1 remains unverified. After our anti-fungal activity screening, 1 was found to inhibit the growth of broad plant pathogenic fungal species belonging to the Ascomycota. It is noteworthy that 1 showed little insecticidal activity against silkworms, suggesting its selective biological activity against plant pathogenic fungi. Our study implies that the combination strategy of multidrug-sensitive yeast and the introduction of laeA is useful for new anti-fungal drug discovery.
Assuntos
Descoberta de Drogas , Saccharomyces cerevisiae , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Descoberta de Drogas/métodos , Candida albicans/efeitos dos fármacos , Metabolismo Secundário , Fungicidas Industriais/farmacologia , Antifúngicos/farmacologia , Antifúngicos/química , Testes de Sensibilidade Microbiana , Ascomicetos/efeitos dos fármacos , Ascomicetos/genética , Aspergillus/efeitos dos fármacos , Aspergillus/genética , Aspergillus/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismoRESUMO
We envisioned that the rumen of Kitasato Yakumo beef cattle would contain unique microorganisms which produce bioactive compounds as their defense response to the external environment. The variety of microorganisms were collected from the feces of Kitasato Yakumo beef cattle. We evaluated the biological activity of the culture broth of the isolated strains, proving the utility of our approach.
Assuntos
Produtos Biológicos , Fezes , Animais , Bovinos , Fezes/microbiologia , Produtos Biológicos/isolamento & purificação , Bactérias/classificação , RNA Ribossômico 16S/genéticaRESUMO
In this paper, we describe our discovery of burnettiene A (1) as an antimalarial compound from the culture broth of Lecanicillium primulinum (current name: Flavocillium primulinum) FKI-6715 strain utilizing our original multidrug-sensitive yeast system. This polyene-decalin polyketide natural product was originally isolated as an antifungal active compound from Aspergillus burnettii. However, the antifungal activity of 1 has been revealed in only one fungal species, and the mechanism of action of 1 remains unknown. After the validation of mitochondrial function inhibitory of 1, we envisioned a new antimalarial drug discovery platform based on mitochondrial function inhibitory activity. We evaluated antimalarial activity and 1 showed antimalarial activity against Plasmodium falciparum FCR3 (chloroquine sensitive) and the K1 strain (chloroquine resistant). Our study revealed the utility of our original screening system based on a multidrug-sensitive yeast and mitochondrial function inhibitory activity for the discovery of new antimalarial drug candidates.
Assuntos
Antimaláricos , Mitocôndrias , Plasmodium falciparum , Saccharomyces cerevisiae , Antimaláricos/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodosRESUMO
We discovered a new tetronomycin analog, C-32-OH tetronomycin (2) from the Streptomyces sp. K20-0247 strain, which produces tetronomycin (1). After NMR analysis of 2, we determined the planar structure. Futhermore, the absolute stereochemistry of 2 was deduced based on the biosynthetic pathway of 1 in the K20-0247 strain and a comparison of experimental electronic circular dichroism (ECD) results of 1 with 2. While 2 exihibits potent antibacterial activity aganist Gram-positive baceria including vancomycin-intermediate Staphylococcus aureus (VISA) strains and vancomycin-resistant Enterococci (VRE), the antibacterial activity of 2 shows 16-32-folds weaker than that of 1 suggesting that the C-34 methyl group in 1 is one of the very important functinal group. Moreover, we evaluated the ionophore activity of 1 and 2 and neither compound shows ionophore activity at reasonable concetrations. Our research suggests that 1 and 2 would have different target(s) from an ionophore mechanism in the antibacterial activity and tetronomycins are promising natural products for broad-spectrum antibiotics.
Assuntos
Antibacterianos , Éteres , Antibacterianos/farmacologia , Bactérias Gram-Positivas , Ionóforos , Testes de Sensibilidade MicrobianaRESUMO
3Z,5E-Octa-3,5-diene-1,3,4-tricarboxylic acid-3,4-anhydride (ODTAA, 1) was isolated from Paecilomyces sp. FKI-6801 for its selective IMP-1 MBL inhibitory activity. The first total synthesis of 1 from the commercially available compound was achieved in 9 steps with 28% overall yield. Introduction of catechol to the maleic anhydride of 1 improved the IC50 toward IMP-1 MBL and the inhibitory activity against IMP-1 MBL-producing P. aeruginosa. Treatment of the maleic anhydride scaffold with amine showed that the ß-carbonyl-α,ß-unsaturated carboxylic acid moiety is required as a pharmacophore for IMP-1 MBL inhibition.
Assuntos
Infecções por Pseudomonas , Humanos , Anidridos , Anidridos Maleicos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , beta-Lactamases , Antibacterianos/farmacologiaRESUMO
Screening for bioactivity related to anti-infective, anti-methicillin-resistant Staphylococcus aureus (MRSA) and anti-viral activity, led us to identify active compounds from a methanol extract of Litsea japonica (Thub.) Juss. and the hot water extract of bark of Cinnamomum sieboldii Meisn (also known as Karaki or Okinawa cinnamon). The two main components in these extracts were identified as the catechin trimers (+)-cinnamtannin B1 and pavetannin B5. Moreover, these extracts exhibited anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) activity. The structures of these catechin trimers were previously determined by chemical and spectroscopic methods. Pavetanin B5 has never been reported to be isolated as a pure form and has been obtained as a mixture with another component. Although other groups have reported the putative structure of pavetannin B5, preparation of the methylated derivative of pavetannin B5 in this study allowed us to obtain the pure form for the first time as the undecamethyl derivative and confirm its exact structure. Commercially available (+)-cinnamtannin B1 and aesculitannin B (C2'-epimer of cinnamtannin B1) both of which contained pavetannin B5 as a minor component, and C. sieboldii bark extract (approx. 5/2 mixture of (+)-cinnamtannin B1/pavetannin B5) were assessed for anti-SARS-CoV-2 activity. Both C. sieboldii bark extract and commercially available aesculitannin B showed viral growth inhibitory activity.
Assuntos
COVID-19 , Catequina , Cinnamomum , Staphylococcus aureus Resistente à Meticilina , Catequina/farmacologia , Casca de Planta/química , SARS-CoV-2 , Extratos Vegetais/químicaRESUMO
Determining the structures of new natural products from marine species not only enriches our understanding of the diverse chemistry of these species, but can also lead to the discovery of compounds with novel and/or important biological activities. Herein, we describe the isolation of isomaneonene C (1), a new halogenated C15 acetogenin, and three known compounds, α-snyderol (2), cis-maneonene D (3), and isomaneonene B (4), from the organic extract obtained from the red alga Laurencia cf. mariannensis collected from Iheya Island, Okinawa, Japan. The structures of these secondary metabolites were elucidated spectroscopically. All compounds were inactive at 30 µg/disc against methicillin-resistant Staphylococcus aureus (MRSA) in combination treatment with a ß-lactam drug, meropenem.
Assuntos
Laurencia , Staphylococcus aureus Resistente à Meticilina , Laurencia/química , Estrutura Molecular , Acetogeninas/farmacologia , Acetogeninas/químicaRESUMO
Aurodox was originally isolated in 1972 as a linear polyketide compound exhibiting antibacterial activity against Gram-positive bacteria. We have since identified aurodox as a specific inhibitor of the bacterial type III secretion system (T3SS) using our original screening system for inhibition of T3SS-mediated hemolysis in enteropathogenic Escherichia coli (EPEC). In this research, we synthesized 15 derivatives of aurodox and evaluated EPEC T3SS inhibitory activity as well as antibacterial activity against EPEC. One of the derivatives was highly selective for T3SS inhibition, equivalent to that of aurodox, but without exhibiting antibacterial activity (69-fold selectivity). This work revealed the structure-activity relationship for the inhibition of T3SS by aurodox and suggests that the target of T3SS is distinct from the target for antibacterial activity.
Assuntos
Aurodox , Escherichia coli Enteropatogênica , Proteínas de Escherichia coli , Antibacterianos/farmacologia , Aurodox/farmacologia , Relação Estrutura-Atividade , Sistemas de Secreção Tipo IIIRESUMO
Two new antiplasmodial peptides, named koshidacins A (1) and B (2), were discovered from the culture broth of the Okinawan fungus Pochonia boninensis FKR-0564. Their structures, including absolute configurations, were elucidated by a combination of spectroscopic methods and chemical derivatization. Both compounds showed moderate in vitro antiplasmodial activity against Plasmodium falciparum strains, with IC50 values ranging from 17.1 to 0.83 µM. In addition, compound 2 suppressed 41% of malaria parasites in vivo when administered intraperitoneally at a dose of 30 mg/kg/day for 4 days.
Assuntos
Antimaláricos , Hypocreales , Peptídeos Cíclicos , Plasmodium falciparum , Antimaláricos/química , Antimaláricos/isolamento & purificação , Antimaláricos/farmacologia , Hypocreales/química , Plasmodium falciparum/efeitos dos fármacos , Peptídeos Cíclicos/química , Peptídeos Cíclicos/isolamento & purificação , Peptídeos Cíclicos/farmacologiaRESUMO
Most natural products derived from microorganisms have been sought from actinomycetes and filamentous fungi. As an attempt to develop new microbial resources in the exploratory research for natural products, we searched for new compounds from unexploited microbial taxa presumed to have biosynthetic gene clusters. A new compound confluenine G (1) and a known compound (2Z)-2-octyl-2-pentenedioic acid (2) were isolated from a cultured broth of basidiomycetous yeast, Moesziomyces sp. FKI-9540, derived from the gut of a moth Acherontia lachesis (Lepidoptera, Sphingidae). Based on the results of HR-ESI-MS and NMR analyses, the planar structure of 1 was elucidated. Confluenine G (1) was a new analog of nitrogen-oxidized isoleucine and had rare substructures with oxime and hydroxamic acid in molecule.
Assuntos
Produtos Biológicos , Lepidópteros , Mariposas , Ustilaginales , Viperidae , Animais , DNA Fúngico , Mariposas/genética , LevedurasRESUMO
The mitochondrial machineries presiding over ATP synthesis via oxidative phosphorylation are promising druggable targets. Fusaramin, a 3-acyl tetramic acid isolated from Fusarium concentricum FKI-7550, is an inhibitor of oxidative phosphorylation in Saccharomyces cerevisiae mitochondria, although its target has yet to be identified. Fusaramin significantly interfered with [3H]ADP uptake by yeast mitochondria at the concentration range inhibiting oxidative phosphorylation. A photoreactive fusaramin derivative (pFS-5) specifically labeled voltage-dependent anion channel 1 (VDAC1), which facilitates trafficking of ADP/ATP across the outer mitochondrial membrane. These results strongly suggest that the inhibition of oxidative phosphorylation by fusaramin is predominantly attributable to the impairment of VDAC1 functions. Fusaramin also inhibited FoF1-ATP synthase and ubiquinol-cytochrome c oxidoreductase (complex III) at concentrations higher than those required for the VDAC inhibition. Considering that other tetramic acid derivatives are reported to inhibit FoF1-ATP synthase and complex III, natural tetramic acids were found to elicit multiple inhibitory actions against mitochondrial machineries.
Assuntos
Fosforilação OxidativaRESUMO
Two new tetramic acid derivatives, traminines A (1) and B (2), were isolated from a culture broth of Fusarium concentricum FKI-7550 by bioassay-guided fractionation using multidrug-sensitive Saccharomyces cerevisiae 12geneΔ0HSR-iERG6. The chemical structures of 1 and 2 were elucidated by NMR studies. Compounds 1 and 2 inhibited the growth of the multidrug-sensitive yeast strain on nonfermentable medium containing glycerol, but not on fermentable medium containing glucose. These results strongly suggest that they target mitochondrial machineries presiding over ATP production via oxidative phosphorylation. Throughout the assay monitoring overall ADP-uptake/ATP-release in yeast mitochondria, 1 and 2 were shown to inhibit one or more enzymes involving oxidative phosphorylation. Based on biochemical characterization, we found that the interference with oxidative phosphorylation by 1 is attributable to the dual inhibition of complex III and FoF1-ATPase, whereas that by 2 is solely due to the inhibition of complex III.
Assuntos
Fusarium , Saccharomyces cerevisiae , Mitocôndrias/metabolismo , Fosforilação OxidativaRESUMO
The multidrug-sensitive budding yeast, Saccharomyces cerevisiae 12geneΔ0HSR-iERG6, is very useful in antifungal screens. A novel compound, named pestynol (1), was discovered from a culture of the fungus Pestalotiopsis humus FKI-7473 using the multidrug-sensitive yeast. The structure of 1 was elucidated by NMR studies and modified Mosher's method as (1 R,2 R,3 R,4 R)-( E)-5-(7,11-dimethyl-3-methylenedodeca-6,10-dien-1-yn-1-yl)cyclohex-5-ene-1,2,3,4-tetraol. Compound 1 showed antimicrobial activity against the Gram-positive bacteria, Klebsiella pneumoniae, and S. cerevisiae 12geneΔ0HSR-iERG6 and Mucor racemosus, but displayed only weak cytotoxicity against various human cancer cell lines. Compound 1 displayed antifungal activities against S. cerevisiae 12geneΔ0HSR-iERG6 and Mucor racemosus at 10 µg/disc.
Assuntos
Antifúngicos/isolamento & purificação , Cicloexenos/isolamento & purificação , Saccharomyces cerevisiae/efeitos dos fármacos , Xylariales/química , Antifúngicos/química , Antifúngicos/farmacologia , Linhagem Celular Tumoral , Cicloexenos/química , Cicloexenos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mucor/efeitos dos fármacosRESUMO
In the course of screening for new anti-influenza virus antibiotics, we isolated herquline A from a culture broth of the fungus, Penicillium herquei FKI-7215. Herquline A inhibited replication of influenza virus A/PR/8/34 strain in a dose-dependent manner without exhibiting cytotoxicity against several human cell lines. It did not inhibit the viral neuraminidase.
Assuntos
Alcaloides/biossíntese , Alcaloides/farmacologia , Antivirais/metabolismo , Antivirais/farmacologia , Orthomyxoviridae/efeitos dos fármacos , Penicillium/metabolismo , Alcaloides/química , Alcaloides/toxicidade , Antivirais/química , Antivirais/toxicidade , Linhagem Celular , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Humanos , Orthomyxoviridae/fisiologia , Replicação Viral/efeitos dos fármacosRESUMO
The secondary metabolites illudins C2 (1) and C3 (2), obtained from the culture broth of Coprinus atramentarius, have been shown to possess antimicrobial activity. In the present study, we discovered novel biological activities of 1 and 2 in lipolysis of differentiated 3T3-L1 adipocytes and adipogenesis of 3T3-L1 preadipocytes. Compounds 1 and 2 exhibit a dose-dependent increase in glycerol release and thereby reduce intracellular lipid accumulation. The stimulatory effects of 1 and 2 on lipolysis are prevented by cAMP-dependent protein kinase (PKA) and extracellular signal-regulated kinase (ERK) inhibitors. Compounds 1 and 2 down-regulated perilipin and also affected the mRNA and protein levels of adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL). However, 1 and 2 treatment leads to a significant increase in PKA-mediated phosphorylation of HSL at S563 and S660. In addition, 1 and 2 treatment in 3T3-L1 preadipocytes induces down-regulation of the critical transcription factors, CCAAT/enhancer binding protein α and ß (C/EBPα and C/EBPß), and peroxisome proliferator activated receptor γ (PPARγ), which are required for adipogenesis, and accordingly inhibits adipogenesis. These results suggest that 1 and 2 might be useful for treating obesity due to their modulatory effects on fat by affecting adipocyte differentiation and fat mobilization.
Assuntos
Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Proteína beta Intensificadora de Ligação a CCAAT/efeitos dos fármacos , Coprinus/química , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Lipase/metabolismo , Lipólise/efeitos dos fármacos , PPAR gama/metabolismo , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/farmacologia , Células 3T3-L1 , Adipócitos/metabolismo , Adipogenia/fisiologia , Animais , Proteína alfa Estimuladora de Ligação a CCAAT , Relação Dose-Resposta a Droga , Glicerol/análise , Glicerol/metabolismo , Lipase/análise , Lipólise/fisiologia , Camundongos , Estrutura Molecular , Obesidade/tratamento farmacológico , Sesquiterpenos Policíclicos , Sesquiterpenos/químicaRESUMO
The first report of transmissible carbapenem resistance encoded by blaIMP-1 was discovered in Pseudomonas aeruginosa GN17203 in 1988, and blaIMP-1 has since been detected in other bacteria, including Enterobacterales. Currently, many variants of blaIMPs exist, and point mutations in the blaIMP promoter have been shown to alter promoter strength. For example, the promoter (Pc) of blaIMP-1, first reported in P. aeruginosa GN17203, was a weak promoter (PcW) with low-level expression intensity. This study investigates whether point mutations in the promoter region have helped to create strong promoters under antimicrobial selection pressure. Using bioinformatic approaches, we retrieved 115 blaIMPs from 14,529 genome data of Pseudomonadota and performed multiple alignment analyses. The results of promoter analysis of the 115 retrieved blaIMPs showed that most of them used the Pc located in class 1 integrons (n = 112, 97.4%). The promoter analysis by year revealed that the blaIMP population with the strong promoter, PcS, was transient. In contrast, the PcW-TG population, which had acquired a TGn-extended -10 motif in PcW and had an intermediate promoter strength, gradually spread throughout the world. An inverse correlation between Pc promoter strength and Intl1 integrase excision efficiency has been reported previously [1]. Because of this trade-off, it is unlikely that blaIMPs with strong promoters will increase rapidly, but the possibility that promoter strength will increase with the use of other integrons cannot be ruled out. Monitoring of the blaIMP genes, including promoter analysis, is necessary for global surveillance of carbapenem-resistant bacteria.