Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Environ ; 46(3): 812-830, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36541032

RESUMO

Elevated CO2 (eCO2 ) reduces the impact of drought, but the mechanisms underlying this effect remain unclear. Therefore, we used a multidisciplinary approach to investigate the interaction of drought and eCO2 in Arabidopsis thaliana leaves. Transcriptome and subsequent metabolite analyses identified a strong induction of the aliphatic glucosinolate (GL) biosynthesis as a main effect of eCO2 in drought-stressed leaves. Transcriptome results highlighted the upregulation of ABI5 and downregulation of WRKY63 transcription factors (TF), known to enhance and inhibit the expression of genes regulating aliphatic GL biosynthesis (e.g., MYB28 and 29 TFs), respectively. In addition, eCO2 positively regulated aliphatic GL biosynthesis by MYB28/29 and increasing the accumulation of GL precursors. To test the role of GLs in the stress-mitigating effect of eCO2 , we investigated the effect of genetic perturbations of the GL biosynthesis. Overexpression of MYB28, 29 and 76 improved drought tolerance by inducing stomatal closure and maintaining plant turgor, whereas loss of cyp79f genes reduced the stress-mitigating effect of eCO2 and decreased drought tolerance. Overall, the crucial role of GL metabolism in drought stress mitigation by eCO2 could be a beneficial trait to overcome future climate challenges.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Glucosinolatos/metabolismo , Dióxido de Carbono/metabolismo , Secas , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Physiol Plant ; 175(6): e14083, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148201

RESUMO

Climate models suggest that the persistence of summer precipitation regimes (PRs) is on the rise, characterized by both longer dry and longer wet durations. These PR changes may alter plant biochemical composition and thereby their economic and ecological characteristics. However, impacts of PR persistence have primarily been studied at the community level, largely ignoring the biochemistry of individual species. Here, we analyzed biochemical components of four grassland species with varying sensitivity to PR persistence (Holcus lanatus, Phleum pratense, Lychnis flos-cuculi, Plantago lanceolata) along a range of increasingly persistent PRs (longer consecutive dry and wet periods) in a mesocosm experiment. The more persistent PRs decreased nonstructural sugars, whereas they increased lignin in all species, possibly reducing plant quality. The most sensitive species Lychnis seemed less capable of altering its biochemical composition in response to altered PRs, which may partly explain its higher sensitivity. The more tolerant species may have a more robust and dynamic biochemical network, which buffers the effects of changes in individual biochemical components on biomass. We conclude that the biochemical composition changes are important determinants for plant performance under increasingly persistent precipitation regimes.


Assuntos
Pradaria , Plantas , Biomassa , Estações do Ano , Mudança Climática
3.
Plant Cell ; 31(2): 346-367, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30705134

RESUMO

Throughout the temperate zones, plants face combined drought and heat spells in increasing frequency and intensity. Here, we compared periodic (intermittent, i.e., high-frequency) versus chronic (continuous, i.e., high-intensity) drought-heat stress scenarios in gray poplar (Populus× canescens) plants for phenotypic and transcriptomic effects during stress and after recovery. Photosynthetic productivity after stress recovery exceeded the performance of poplar trees without stress experience. We analyzed the molecular basis of this stress-related memory phenotype and investigated gene expression responses across five major tree compartments including organs and wood tissues. For each of these tissue samples, transcriptomic changes induced by the two stress scenarios were highly similar during the stress phase but strikingly divergent after recovery. Characteristic molecular response patterns were found across tissues but involved different genes in each tissue. Only a small fraction of genes showed similar stress and recovery expression profiles across all tissues, including type 2C protein phosphatases, the LATE EMBRYOGENESIS ABUNDANT PROTEIN4-5 genes, and homologs of the Arabidopsis (Arabidopsis thaliana) transcription factor HOMEOBOX7. Analysis of the predicted transcription factor regulatory networks for these genes suggested that a complex interplay of common and tissue-specific components contributes to the coordination of post-recovery responses to stress in woody plants.


Assuntos
Proteínas de Plantas/metabolismo , Populus/metabolismo , Secas , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética , Populus/genética , Estresse Fisiológico
4.
Planta ; 254(1): 13, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34173050

RESUMO

MAIN CONCLUSIONS: Sugar-mediated osmotic acclimation and a strong antioxidative response reduce drought-induced biomass loss at the vegetative stage in rice. A clear understanding of the physiological and biochemical adaptations to water limitation in upland and aerobic rice can help to identify the mechanisms underlying their tolerance to low water availability. In this study, three indica rice varieties-IR64 (lowland), Apo (aerobic), and UPL Ri-7 (upland)-, that are characterized by contrasting levels of drought tolerance, were exposed to drought at the vegetative stage. Drought-induced changes in biomass, leaf metabolites and oxidative stress markers/enzyme activities were analyzed in each variety at multiple time points. The two drought-tolerant varieties, Apo and UPL Ri-7 displayed a reduced water use in contrast to the susceptible variety IR64 that displayed high water consumption and consequent strong leaf dehydration upon drought treatment. A sugar-mediated osmotic acclimation in UPL Ri-7 and a strong antioxidative response in Apo were both effective in limiting the drought-induced biomass loss in these two varieties, while biomass loss was high in IR64, also after recovery. A qualitative comparison of these results with the ones of a similar experiment conducted in the field at the reproductive stage showed that only Apo, which also in this stage showed the highest antioxidant power, was able to maintain a stable grain yield under stress. Our results show that different metabolic and antioxidant adaptations confer drought tolerance to aerobic and upland rice varieties in the vegetative stage. The effectiveness of these adaptations differs between developmental stages. Unraveling the genetic control of these mechanisms might be exploited in breeding for new rice varieties adapted to water-limited environments.


Assuntos
Oryza , Adaptação Fisiológica , Antioxidantes , Secas , Melhoramento Vegetal
5.
Plant Cell Environ ; 43(9): 2254-2271, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32488892

RESUMO

To understand the growth response to drought, we performed a proteomics study in the leaf growth zone of maize (Zea mays L.) seedlings and functionally characterized the role of starch biosynthesis in the regulation of growth, photosynthesis and antioxidant capacity, using the shrunken-2 mutant (sh2), defective in ADP-glucose pyrophosphorylase. Drought altered the abundance of 284 proteins overrepresented for photosynthesis, amino acid, sugar and starch metabolism, and redox-regulation. Changes in protein levels correlated with enzyme activities (increased ATP synthase, cysteine synthase, starch synthase, RuBisCo, peroxiredoxin, glutaredoxin, thioredoxin and decreased triosephosphate isomerase, ferredoxin, cellulose synthase activities, respectively) and metabolite concentrations (increased ATP, cysteine, glycine, serine, starch, proline and decreased cellulose levels). The sh2 mutant showed a reduced increase of starch levels under drought conditions, leading to soluble sugar starvation at the end of the night and correlating with an inhibition of leaf growth rates. Increased RuBisCo activity and pigment concentrations observed in WT, in response to drought, were lacking in the mutant, which suffered more oxidative damage and recovered more slowly after re-watering. These results demonstrate that starch biosynthesis contributes to maintaining leaf growth under drought stress and facilitates enhanced carbon acquisition upon recovery.


Assuntos
Secas , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Amido/metabolismo , Zea mays/fisiologia , Aminoácidos/metabolismo , Antioxidantes/metabolismo , Divisão Celular , Desidratação , Regulação da Expressão Gênica de Plantas , Mutação , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Estômatos de Plantas/fisiologia , Amido/biossíntese , Zea mays/citologia
6.
J Exp Bot ; 71(3): 1053-1066, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31624838

RESUMO

We analysed the cellular and molecular changes in the leaf growth zone of tolerant and sensitive rice varieties in response to suboptimal temperatures. Cold reduced the final leaf length by 35% and 51% in tolerant and sensitive varieties, respectively. Tolerant lines exhibited a smaller reduction of the leaf elongation rate and greater compensation by an increased duration of leaf growth. Kinematic analysis showed that cold reduced cell production in the meristem and the expansion rate in the elongation zone, but the latter was compensated for by a doubling of the duration of cell expansion. We performed iTRAQ proteome analysis on proliferating and expanding parts of the leaf growth zone. We identified 559 and 542 proteins, of which 163 and 210 were differentially expressed between zones, and 96 and 68 between treatments, in the tolerant and sensitive lines, respectively. The categories protein biosynthesis and redox homeostasis were significantly overrepresented in the up-regulated proteins. We therefore measured redox metabolites and enzyme activities in the leaf growth zone, demonstrating that tolerance of rice lines to suboptimal temperatures correlates with the ability to up-regulate enzymatic antioxidants in the meristem and non-enzymatic antioxidants in the elongation zone.


Assuntos
Aclimatação , Antioxidantes/metabolismo , Oryza/fisiologia , Folhas de Planta/metabolismo , Temperatura Baixa , Homeostase , Oxirredução , Folhas de Planta/crescimento & desenvolvimento , Proteoma
7.
J Exp Bot ; 71(2): 669-683, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31087074

RESUMO

Crop yield stability requires an attenuation of the reduction of yield losses caused by environmental stresses such as drought. Using a combination of metabolomics and high-throughput colorimetric assays, we analysed central metabolism and oxidative stress status in the flag leaf of 292 indica rice (Oryza sativa) accessions. Plants were grown in the field and were, at the reproductive stage, exposed to either well-watered or drought conditions to identify the metabolic processes associated with drought-induced grain yield loss. Photorespiration, protein degradation, and nitrogen recycling were the main processes involved in the drought-induced leaf metabolic reprogramming. Molecular markers of drought tolerance and sensitivity in terms of grain yield were identified using a multivariate model based on the values of the metabolites and enzyme activities across the population. The model highlights the central role of the ascorbate-glutathione cycle, particularly dehydroascorbate reductase, in minimizing drought-induced grain yield loss. In contrast, malondialdehyde was an accurate biomarker for grain yield loss, suggesting that drought-induced lipid peroxidation is the major constraint under these conditions. These findings highlight new breeding targets for improved rice grain yield stability under drought.


Assuntos
Biomarcadores/metabolismo , Secas , Oryza/fisiologia , Grão Comestível/crescimento & desenvolvimento , Oryza/genética , Oryza/crescimento & desenvolvimento , Estresse Fisiológico
8.
New Phytol ; 224(1): 166-176, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31209882

RESUMO

Information on the onset of leaf senescence in temperate deciduous trees and comparisons on its assessment methods are limited, hampering our understanding of autumn dynamics. We compare five field proxies, five remote sensing proxies and two data analysis approaches to assess leaf senescence onset at one main beech stand, two stands of oak and birch, and three ancillary stands of the same species in Belgium during 2017 and 2018. Across species and sites, onset of leaf senescence was not significantly different for the field proxies based on Chl leaf content and canopy coloration, except for an advanced canopy coloration during the extremely dry and warm 2018. Two remote sensing indices provided results fully consistent with the field data. A significant lag emerged between leaf senescence onset and leaf fall, and when a threshold of 50% change in the seasonal variable under study (e.g. Chl content) was used to derive the leaf senescence onset. Our results provide unprecedented information on the quality and applicability of different proxies to assess leaf senescence onset in temperate deciduous trees. In addition, a sound base is offered to select the most suited methods for the different disciplines that need this type of data.


Assuntos
Florestas , Folhas de Planta/crescimento & desenvolvimento , Estações do Ano , Árvores/crescimento & desenvolvimento , Especificidade da Espécie , Fatores de Tempo
9.
Environ Sci Technol ; 53(3): 1617-1626, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30615438

RESUMO

The ubiquity of perfluoroalkyl acids (PFAAs) contrasts with the limited information about their effects. We report here PFAA plasma concentrations in wild populations of great tits ( Parus major) settled at and in the vicinity of a fluorochemical plant in Antwerp (Belgium). Using two generations we obtained novel results on some poorly known issues such as differences between sexes, maternal transfer of the compounds and potential associations with the oxidative status. For five out of the 11 detected PFAAs, the concentrations were the highest ever reported in birds' plasma, which confirms that Antwerp is one of the main hotspots for PFAAs pollution. Contrary to other studies conducted in birds, we found that females presented higher mean concentrations and detection frequencies for two compounds (perfluorooctanesulfonic acid (PFOS) and perfluoroundecanoic acid (PFUnDA)) than males. Maternal transfer and the dietary intake appear to be the main route of exposure for nestlings to PFOS but not to other compounds. Finally, PFAA concentrations tended to correlate positively with protein damage in adult birds while in nestlings they positively correlated with higher activity of antioxidant enzymes (glutathione peroxidase and catalase). Experimental work is needed to confirm oxidative stress as a pathway for the pernicious effects of PFAAs.


Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Animais , Bélgica , Monitoramento Ambiental , Poluição Ambiental , Feminino , Masculino , Estresse Oxidativo
10.
J Exp Bot ; 69(8): 2159-2170, 2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29462345

RESUMO

As a consequence of global change processes, plants will increasingly be challenged by extreme climatic events, against a background of elevated atmospheric CO2. We analysed responses of Arabidopsis thaliana to periods of a combination of elevated heat and water deficit at ambient and elevated CO2 in order to gain mechanistic insights regarding changes in primary metabolism. Metabolic changes induced by extremes of climate are dynamic and specific to different classes of molecules. Concentrations of soluble sugars and amino acids increased transiently after short (4-d) exposure to heat and drought, and readjusted to control levels under prolonged (8-d) stress. In contrast, fatty acids showed persistent changes during the stress period. Elevated CO2 reduced the impact of stress on sugar and amino acid metabolism, but not on fatty acids. Integrating metabolite data with transcriptome results revealed that some of the metabolic changes were regulated at the transcriptional level. Multivariate analyses grouped metabolites on the basis of stress exposure time, indicating specificity in metabolic responses to short and prolonged stress. Taken together, the results indicate that dynamic metabolic reprograming plays an important role in plant acclimation to climatic extremes. The extent of such metabolic adjustments is less under high CO2, further pointing towards the role of high CO2 in stress mitigation.


Assuntos
Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dióxido de Carbono/análise , Mudança Climática , Secas , Regulação da Expressão Gênica de Plantas , Temperatura Alta , Transcriptoma
11.
Mol Ecol ; 26(8): 2276-2290, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28133853

RESUMO

Ocean acidification is an emerging problem that is expected to impact ocean species to varying degrees. Currently, little is known about its effect on molecular mechanisms induced in fleshy macroalgae. To elucidate genome wide responses to acidification, a transcriptome analysis was carried out on Sargassum vulgare populations growing under acidified conditions at volcanic CO2 vents and compared with populations in a control site. Several transcripts involved in a wide range of cellular and metabolic processes were differentially expressed. No drastic changes were observed in the carbon acquisition processes and RuBisCO level. Moreover, relatively few stress genes, including those for antioxidant enzymes and heat-shock proteins, were affected. Instead, increased expression of transcripts involved in energy metabolism, photosynthetic processes and ion homeostasis suggested that algae increased energy production to maintain ion homeostasis and other cellular processes. Also, an increased allocation of carbon to cell wall and carbon storage was observed. A number of genes encoding proteins involved in cellular signalling, information storage and processing and transposition were differentially expressed between the two conditions. The transcriptional changes of key enzymes were largely confirmed by enzymatic activity measurements. Altogether, the changes induced by acidification indicate an adaptation of growth and development of S. vulgare at the volcanic CO2 vents, suggesting that this fleshy alga exhibits a high plasticity to low pH and can adopt molecular strategies to grow also in future more acidified waters.


Assuntos
Ácidos/química , Dióxido de Carbono/química , Fontes Hidrotermais/química , Sargassum/genética , Água do Mar/química , Transcriptoma , Aclimatação/genética , Carbono/metabolismo , Concentração de Íons de Hidrogênio
12.
Proc Natl Acad Sci U S A ; 111(20): 7355-60, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24799708

RESUMO

Recent temperature increases have elicited strong phenological shifts in temperate tree species, with subsequent effects on photosynthesis. Here, we assess the impact of advanced leaf flushing in a winter warming experiment on the current year's senescence and next year's leaf flushing dates in two common tree species: Quercus robur L. and Fagus sylvatica L. Results suggest that earlier leaf flushing translated into earlier senescence, thereby partially offsetting the lengthening of the growing season. Moreover, saplings that were warmed in winter-spring 2009-2010 still exhibited earlier leaf flushing in 2011, even though the saplings had been exposed to similar ambient conditions for almost 1 y. Interestingly, for both species similar trends were found in mature trees using a long-term series of phenological records gathered from various locations in Europe. We hypothesize that this long-term legacy effect is related to an advancement of the endormancy phase (chilling phase) in response to the earlier autumnal senescence. Given the importance of phenology in plant and ecosystem functioning, and the prediction of more frequent extremely warm winters, our observations and postulated underlying mechanisms should be tested in other species.


Assuntos
Folhas de Planta/fisiologia , Estações do Ano , Árvores/fisiologia , Clima , Temperatura Baixa , Ecossistema , Fagus/fisiologia , Genótipo , Aquecimento Global , Modelos Lineares , Fenômenos Fisiológicos Vegetais , Quercus/fisiologia , Especificidade da Espécie , Temperatura
13.
Artigo em Inglês | MEDLINE | ID: mdl-28499963

RESUMO

Increasing urbanization is responsible for road-related pollutants and causes an unprecedented increase in light and noise pollution, with potential detrimental effects for individual animals, communities and ecosystems. These stressors rarely act in isolation but studies dissecting the effects of these multiple stressors are lacking. Moreover, studies on urban stressors have mainly focused on adults, while exposure in early-life may be detrimental but is largely ignored. To fill this important knowledge gap, we studied if artificial light at night, anthropogenic noise and road-related pollution (using distance from roads as a proxy) explain variation in oxidative status in great tit nestlings (Parus major) in an urban population. Artificial light at night, anthropogenic noise and distance from roads were not associated with variation of the nine studied metrics of oxidative status (superoxide dismutase-SOD-, glutathione peroxidase-GPX, catalase-CAT-, non-enzymatic total antioxidant capacity-TAC-, reduced glutathione-GSH-, oxidized glutathione-GSSG-, ratio GSH/GSSG, protein carbonyls and thiobarbituric acid reactive substances-TBARS). Interestingly, for all oxidative status metrics, we found that there was more variation in oxidative status among individuals of the same nest compared to between different nests. We also showed an increase in protein carbonyls and a decrease of the ratio GSH/GSSG as the day advanced, and an increase of GPX when weather conditions deteriorated. Our study suggests that anthropogenic noise, artificial light at night and road-related pollution are not the most important sources of variation in oxidative status in great tit nestlings. It also highlights the importance of considering bleeding time and weather conditions in studies with free-living animals.


Assuntos
Estresse Oxidativo , Aves Canoras/fisiologia , Animais , Bélgica , Catalase/sangue , Feminino , Glutationa/sangue , Glutationa Peroxidase/sangue , Iluminação , Masculino , Comportamento de Nidação , Ruído , Superóxido Dismutase/sangue , Urbanização
14.
Ecotoxicol Environ Saf ; 140: 256-263, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28273625

RESUMO

Algae are frequently exposed to toxic metals, and zinc (Zn) is one of the major toxicants present. We exposed two green microalgae, Chlorella sorokiniana and Scenedesmus acuminatus, to sub-lethal concentrations (1.0 and 0.6mM) of Zn for seven days. Algal responses were analysed at the level of growth, oxidative stress, and antioxidants. Growth parameters such as cell culture yield and pigment content were less affected by Zn in C. sorokiniana, despite the fact that this alga accumulated more zinc than S. acuminatus. Also, C. sorokiniana, but not S. acuminatus, was able to acclimatize during long-term exposure to toxic concentrations of the test metals (specific growth rate (µ) was 0.041/day and total chlorophyll was 14.6mg/mL). Although, Zn induced oxidative stress in both species, C. sorokiniana experienced less stress than S. acuminatus. This could be explained by a higher accumulation of antioxidants in C. sorokiniana, where flavonoids, polyphenols, tocopherols, glutathione (GSH) and ascorbate (ASC) content increased. Moreover, antioxidant enzymes glutathione S transferase (GST), glutathione reductase (GR), superoxide dismutase (SOD), peroxidase (POX) and ascorbate peroxidase (APX), showed increased activities in C. sorokiniana. In addition to, and probably also underlying, the higher Zn tolerance in C. sorokiniana, this alga also showed higher Zn biosorption capacity. Use of C. sorokiniana as a bio-remediator, could be considered.


Assuntos
Chlorella/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Scenedesmus/efeitos dos fármacos , Zinco/toxicidade , Antioxidantes/farmacologia , Ascorbato Peroxidases/metabolismo , Ácido Ascórbico/metabolismo , Chlorella/metabolismo , Clorofila/metabolismo , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Metais Pesados/toxicidade , Oxirredutases/metabolismo , Peroxidase/metabolismo , Peroxidases/metabolismo , Scenedesmus/metabolismo , Superóxido Dismutase/metabolismo
15.
Plant Physiol ; 169(2): 1382-96, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26297138

RESUMO

Drought is the most important crop yield-limiting factor, and detailed knowledge of its impact on plant growth regulation is crucial. The maize (Zea mays) leaf growth zone offers unique possibilities for studying the spatiotemporal regulation of developmental processes by transcriptional analyses and methods that require more material, such as metabolite and enzyme activity measurements. By means of a kinematic analysis, we show that drought inhibits maize leaf growth by inhibiting cell division in the meristem and cell expansion in the elongation zone. Through a microarray study, we observed the down-regulation of 32 of the 54 cell cycle genes, providing a basis for the inhibited cell division. We also found evidence for an up-regulation of the photosynthetic machinery and the antioxidant and redox systems. This was confirmed by increased chlorophyll content in mature cells and increased activity of antioxidant enzymes and metabolite levels across the growth zone, respectively. We demonstrate the functional significance of the identified transcriptional reprogramming by showing that increasing the antioxidant capacity in the proliferation zone, by overexpression of the Arabidopsis (Arabidopsis thaliana) iron-superoxide dismutase gene, increases leaf growth rate by stimulating cell division. We also show that the increased photosynthetic capacity leads to enhanced photosynthesis upon rewatering, facilitating the often-observed growth compensation.


Assuntos
Secas , Folhas de Planta/crescimento & desenvolvimento , Zea mays/fisiologia , Arabidopsis/genética , Ciclo Celular/genética , Regulação da Expressão Gênica de Plantas , Estresse Oxidativo/genética , Fotossíntese/genética , Folhas de Planta/citologia , Folhas de Planta/fisiologia , Plantas Geneticamente Modificadas , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
16.
Plant Physiol ; 169(1): 560-75, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26162427

RESUMO

Isoprene emissions from poplar (Populus spp.) plantations can influence atmospheric chemistry and regional climate. These emissions respond strongly to temperature, [CO2], and drought, but the superimposed effect of these three climate change factors are, for the most part, unknown. Performing predicted climate change scenario simulations (periodic and chronic heat and drought spells [HDSs] applied under elevated [CO2]), we analyzed volatile organic compound emissions, photosynthetic performance, leaf growth, and overall carbon (C) gain of poplar genotypes emitting (IE) and nonemitting (NE) isoprene. We aimed (1) to evaluate the proposed beneficial effect of isoprene emission on plant stress mitigation and recovery capacity and (2) to estimate the cumulative net C gain under the projected future climate. During HDSs, the chloroplastidic electron transport rate of NE plants became impaired, while IE plants maintained high values similar to unstressed controls. During recovery from HDS episodes, IE plants reached higher daily net CO2 assimilation rates compared with NE genotypes. Irrespective of the genotype, plants undergoing chronic HDSs showed the lowest cumulative C gain. Under control conditions simulating ambient [CO2], the C gain was lower in the IE plants than in the NE plants. In summary, the data on the overall C gain and plant growth suggest that the beneficial function of isoprene emission in poplar might be of minor importance to mitigate predicted short-term climate extremes under elevated [CO2]. Moreover, we demonstrate that an analysis of the canopy-scale dynamics of isoprene emission and photosynthetic performance under multiple stresses is essential to understand the overall performance under proposed future conditions.


Assuntos
Butadienos/análise , Mudança Climática , Hemiterpenos/análise , Pentanos/análise , Populus/química , Carbono/metabolismo , Proliferação de Células , Ecossistema , Fotossíntese , Pigmentação , Folhas de Planta/química , Fatores de Tempo , Compostos Orgânicos Voláteis/análise , Água
17.
New Phytol ; 208(2): 354-69, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26037253

RESUMO

Proline (Pro) is a versatile metabolite playing a role in the protection of plants against environmental stresses. To gain a deeper understanding of the regulation of Pro metabolism under predicted future climate conditions, including drought stress, elevated temperature and CO2 , we combined measurements in contrasting grassland species (two grasses and two legumes) at multiple organisational levels, that is, metabolite concentrations, enzyme activities and gene expression. Drought stress (D) activates Pro biosynthesis and represses its catabolism, and elevated temperature (DT) further elevated its content. Elevated CO2 attenuated the DT effect on Pro accumulation. Computational pathway control analysis allowed a mechanistic understanding of the regulatory changes in Pro metabolism. This analysis indicates that the experimentally observed coregulation of multiple enzymes is more effective in modulating Pro concentrations than regulation of a single step. Pyrroline-5-carboxylate synthetase (P5CS) and pyrroline-5-carboxylate reductase (P5CR) play a central role in grasses (Lolium perenne, Poa pratensis), and arginase (ARG), ornithine aminotransferase (OAT) and P5CR play a central role in legumes (Medicago lupulina, Lotus corniculatus). Different strategies in the regulation of Pro concentrations under stress conditions were observed. In grasses the glutamate pathway is activated predominantly, and in the legumes the ornithine pathway, possibly related to differences in N-nutritional status.


Assuntos
Clima , Pradaria , Modelos Biológicos , Prolina/metabolismo , Ácido Glutâmico/metabolismo , Redes e Vias Metabólicas , Método de Monte Carlo , Ornitina/metabolismo , Pirróis/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Especificidade da Espécie , Termodinâmica
18.
Plant Physiol ; 164(3): 1470-83, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24424319

RESUMO

Cytokinins are plant hormones that regulate diverse processes in plant development and responses to biotic and abiotic stresses. In this study, we show that Arabidopsis (Arabidopsis thaliana) plants with a reduced cytokinin status (i.e. cytokinin receptor mutants and transgenic cytokinin-deficient plants) are more susceptible to light stress compared with wild-type plants. This was reflected by a stronger photoinhibition after 24 h of high light (approximately 1,000 µmol m(-2) s(-1)), as shown by the decline in maximum quantum efficiency of photosystem II photochemistry. Photosystem II, especially the D1 protein, is highly sensitive to the detrimental impact of light. Therefore, photoinhibition is always observed when the rate of photodamage exceeds the rate of D1 repair. We demonstrate that in plants with a reduced cytokinin status, the D1 protein level was strongly decreased upon light stress. Inhibition of the D1 repair cycle by lincomycin treatment indicated that these plants experience stronger photodamage. The efficiency of photoprotective mechanisms, such as nonenzymatic and enzymatic scavenging systems, was decreased in plants with a reduced cytokinin status, which could be a cause for the increased photodamage and subsequent D1 degradation. Additionally, slow and incomplete recovery in these plants after light stress indicated insufficient D1 repair. Mutant analysis revealed that the protective function of cytokinin during light stress depends on the Arabidopsis histidine KINASE2 (AHK2) and AHK3 receptors and the type B Arabidopsis response regulator1 (ARR1) and ARR12. We conclude that proper cytokinin signaling and regulation of specific target genes are necessary to protect leaves efficiently from light stress.


Assuntos
Arabidopsis/enzimologia , Arabidopsis/fisiologia , Citocininas/farmacologia , Luz , Proteínas Quinases/metabolismo , Estresse Fisiológico/efeitos da radiação , Antioxidantes/metabolismo , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Cloroplastos/efeitos dos fármacos , Cloroplastos/efeitos da radiação , Cloroplastos/ultraestrutura , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genes de Plantas , Histidina Quinase , Modelos Biológicos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Fotossíntese/efeitos dos fármacos , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema II/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação , Estresse Fisiológico/efeitos dos fármacos , Fatores de Transcrição/metabolismo
19.
Molecules ; 20(8): 13620-41, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26225946

RESUMO

Date palm is an important crop, especially in the hot-arid regions of the world. Date palm fruits have high nutritional and therapeutic value and possess significant antibacterial and antifungal properties. In this study, we performed bioactivity analyses and metabolic profiling of date fruits of 12 cultivars from Saudi Arabia to assess their nutritional value. Our results showed that the date extracts from different cultivars have different free radical scavenging and anti-lipid peroxidation activities. Moreover, the cultivars showed significant differences in their chemical composition, e.g., the phenolic content (10.4-22.1 mg/100 g DW), amino acids (37-108 µmol·g-1 FW) and minerals (237-969 mg/100 g DW). Principal component analysis (PCA) showed a clear separation of the cultivars into four different groups. The first group consisted of the Sokary, Nabtit Ali cultivars, the second group of Khlas Al Kharj, Khla Al Qassim, Mabroom, Khlas Al Ahsa, the third group of Khals Elshiokh, Nabot Saif, Khodry, and the fourth group consisted of Ajwa Al Madinah, Saffawy, Rashodia, cultivars. Hierarchical cluster analysis (HCA) revealed clustering of date cultivars into two groups. The first cluster consisted of the Sokary, Rashodia and Nabtit Ali cultivars, and the second cluster contained all the other tested cultivars. These results indicate that date fruits have high nutritive value, and different cultivars have different chemical composition.


Assuntos
Análise de Alimentos , Frutas , Valor Nutritivo , Phoeniceae , Frutas/química , Frutas/metabolismo , Phoeniceae/química , Phoeniceae/metabolismo , Arábia Saudita
20.
Glob Chang Biol ; 20(12): 3670-85, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24802996

RESUMO

Climate changes increasingly threaten plant growth and productivity. Such changes are complex and involve multiple environmental factors, including rising CO2 levels and climate extreme events. As the molecular and physiological mechanisms underlying plant responses to realistic future climate extreme conditions are still poorly understood, a multiple organizational level analysis (i.e. eco-physiological, biochemical, and transcriptional) was performed, using Arabidopsis exposed to incremental heat wave and water deficit under ambient and elevated CO2 . The climate extreme resulted in biomass reduction, photosynthesis inhibition, and considerable increases in stress parameters. Photosynthesis was a major target as demonstrated at the physiological and transcriptional levels. In contrast, the climate extreme treatment induced a protective effect on oxidative membrane damage, most likely as a result of strongly increased lipophilic antioxidants and membrane-protecting enzymes. Elevated CO2 significantly mitigated the negative impact of a combined heat and drought, as apparent in biomass reduction, photosynthesis inhibition, chlorophyll fluorescence decline, H2 O2 production, and protein oxidation. Analysis of enzymatic and molecular antioxidants revealed that the stress-mitigating CO2 effect operates through up-regulation of antioxidant defense metabolism, as well as by reduced photorespiration resulting in lowered oxidative pressure. Therefore, exposure to future climate extreme episodes will negatively impact plant growth and production, but elevated CO2 is likely to mitigate this effect.


Assuntos
Arabidopsis/fisiologia , Dióxido de Carbono/metabolismo , Mudança Climática , Secas , Temperatura Alta/efeitos adversos , Modelos Biológicos , Estresse Fisiológico/fisiologia , Análise de Variância , Elementos de Resposta Antioxidante/fisiologia , Arabidopsis/genética , Biomassa , Simulação por Computador , Perfilação da Expressão Gênica , Peróxido de Hidrogênio/metabolismo , Análise em Microsséries , Fotossíntese/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA