Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(1)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36678894

RESUMO

Silk fibroin nanoparticles (SFN) have become a promising tool in drug delivery systems due to their physicochemical characteristics. SFN have shown their outstanding properties as an active vehicle for polyphenols, enhancing their antioxidant and anti-inflammatory effects on macrophages; therefore, it becomes necessary to have an easy, reproducible and scalable production method. In order to improve the production of nanoparticles, we performed direct precipitation of non-dialyzed silk fibroin solutions and evaluated the reproducibility of the method using dynamic light scattering. We also studied the loading efficiency of three different natural polyphenols using propylene glycol as a solvent. The loaded nanoparticles were fully characterized and used to treat human macrophage cells to assess the anti-inflammatory activity of these nanoparticles. The measured hydrodynamic characteristics of the SFN and the overall yield of the process showed that the new preparation method is highly reproducible and repeatable. Thus, we not only present a new scalable method to prepare silk nanoparticles but also how to improve the loading of natural polyphenolic compounds to the SFN, as well as the important anti-inflammatory effects of these loaded nanoparticles in a cell model of human macrophage cells.

2.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-37259395

RESUMO

Nuclear imaging is a highly sensitive and noninvasive imaging technique that has become essential for medical diagnosis. The use of radiolabeled nanomaterials capable of acting as imaging probes has shown rapid development in recent years as a powerful, highly sensitive, and noninvasive tool. In addition, quantitative single-photon emission computed tomography (SPECT) images performed by incorporating radioisotopes into nanoparticles (NPs) might improve the evaluation and the validation of potential clinical treatments. In this work, we present a direct method for [99mTc]Tc-radiolabeling of FITC-tagged silk fibroin nanoparticles (SFN). NPs were characterized by means of dynamic light scattering and scanning electron microscopy. In vitro studies were carried out, including the evaluation of stability in biological media and the evaluation of hemocompatibility and genotoxicity using the cytokinesis block micronucleus (CBMN) assay. The radiolabeling method was reproducible and robust with high radiolabeling efficiency (∼95%) and high stability in biological media. Hydrodynamic properties of the radiolabeled NPs remain stable after dual labeling. The interaction of SFN with blood elicits a mild host response, as expected. Furthermore, CBMN assay did not show genotoxicity induced by [99mTc]Tc-FITC-SFN under the described conditions. In conclusion, a feasible and robust dual-labeling method has been developed whose applicability has been demonstrated in vitro, showing its value for further investigations of silk fibroin NPs biodistribution in vivo.

3.
Polymers (Basel) ; 14(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35160487

RESUMO

In recent years, silk fibroin nanoparticles (SFNs) have been consolidated as drug delivery systems (DDSs) with multiple applications in personalized medicine. The design of a simple, inexpensive, and scalable preparation method is an objective pursued by many research groups. When the objective is to produce nanoparticles suitable for biomedical uses, their sterility is essential. To achieve sufficient control of all the crucial stages in the process and knowledge of their implications for the final characteristics of the nanoparticles, the present work focused on the final stage of sterilization. In this work, the sterilization of SFNs was studied by comparing the effect of different available treatments on the characteristics of the nanoparticles. Two different sterilization methods, gamma irradiation and autoclaving, were tested, and optimal conditions were identified to achieve the sterilization of SFNs by gamma irradiation. The minimum irradiation dose to achieve sterilization of the nanoparticle suspension without changes in the nanoparticle size, polydispersity, or Z-potential was determined to be 5 kiloGrays (kGy). These simple and safe methods were successfully implemented for the sterilization of SFNs in aqueous suspension and facilitate the application of these nanoparticles in medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA