Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biol ; 19(1): 265, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911556

RESUMO

BACKGROUND: Tissue hypoxia is a key feature of several endemic hepatic diseases, including alcoholic and non-alcoholic fatty liver disease, and organ failure. Hypoxia imposes a severe metabolic challenge on the liver, potentially disrupting its capacity to carry out essential functions including fuel storage and the integration of lipid metabolism at the whole-body level. Mitochondrial respiratory function is understood to be critical in mediating the hepatic hypoxic response, yet the time-dependent nature of this response and the role of the respiratory chain in this remain unclear. RESULTS: Here, we report that hepatic respiratory capacity is enhanced following short-term exposure to hypoxia (2 days, 10% O2) and is associated with increased abundance of the respiratory chain supercomplex III2+IV and increased cardiolipin levels. Suppression of this enhanced respiratory capacity, achieved via mild inhibition of mitochondrial complex III, disrupted metabolic homeostasis. Hypoxic exposure for 2 days led to accumulation of plasma and hepatic long chain acyl-carnitines. This was observed alongside depletion of hepatic triacylglycerol species with total chain lengths of 39-53 carbons, containing palmitic, palmitoleic, stearic, and oleic acids, which are associated with de novo lipogenesis. The changes to hepatic respiratory capacity and lipid metabolism following 2 days hypoxic exposure were transient, becoming resolved after 14 days in line with systemic acclimation to hypoxia and elevated circulating haemoglobin concentrations. CONCLUSIONS: The liver maintains metabolic homeostasis in response to shorter term hypoxic exposure through transient enhancement of respiratory chain capacity and alterations to lipid metabolism. These findings may have implications in understanding and treating hepatic pathologies associated with hypoxia.


Assuntos
Metabolismo dos Lipídeos , Fígado , Homeostase , Humanos , Hipóxia/metabolismo , Lipogênese , Fígado/metabolismo
2.
Biochem Soc Trans ; 49(1): 17-27, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33599699

RESUMO

Mitochondria are pivotal for normal cellular physiology, as they perform a crucial role in diverse cellular functions and processes, including respiration and the regulation of bioenergetic and biosynthetic pathways, as well as regulating cellular signalling and transcriptional networks. In this way, mitochondria are central to the cell's homeostatic machinery, and as such mitochondrial dysfunction underlies the pathology of a diverse range of diseases including mitochondrial disease and cancer. Mitochondrial import pathways and targeting mechanisms provide the means to transport into mitochondria the hundreds of nuclear-encoded mitochondrial proteins that are critical for the organelle's many functions. One such import pathway is the highly evolutionarily conserved disulfide relay system (DRS) within the mitochondrial intermembrane space (IMS), whereby proteins undergo a form of oxidation-dependent protein import. A central component of the DRS is the oxidoreductase coiled-coil-helix-coiled-coil-helix (CHCH) domain-containing protein 4 (CHCHD4, also known as MIA40), the human homologue of yeast Mia40. Here, we summarise the recent advances made to our understanding of the role of CHCHD4 and the DRS in physiology and disease, with a specific focus on the emerging importance of CHCHD4 in regulating the cellular response to low oxygen (hypoxia) and metabolism in cancer.


Assuntos
Dissulfetos/metabolismo , Mitocôndrias/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/fisiologia , Animais , Humanos , Redes e Vias Metabólicas/genética , Transporte Proteico/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia
3.
Cell Mol Life Sci ; 76(9): 1759-1777, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30767037

RESUMO

Oxygen is required for the survival of the majority of eukaryotic organisms, as it is important for many cellular processes. Eukaryotic cells utilize oxygen for the production of biochemical energy in the form of adenosine triphosphate (ATP) generated from the catabolism of carbon-rich fuels such as glucose, lipids and glutamine. The intracellular sites of oxygen consumption-coupled ATP production are the mitochondria, double-membraned organelles that provide a dynamic and multifaceted role in cell signalling and metabolism. Highly evolutionarily conserved molecular mechanisms exist to sense and respond to changes in cellular oxygen levels. The primary transcriptional regulators of the response to decreased oxygen levels (hypoxia) are the hypoxia-inducible factors (HIFs), which play important roles in both physiological and pathophysiological contexts. In this review we explore the relationship between HIF-regulated signalling pathways and the mitochondria, including the regulation of mitochondrial metabolism, biogenesis and distribution.


Assuntos
Hipóxia Celular/fisiologia , Metabolismo Energético/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Mitocôndrias/metabolismo , Oxigênio/metabolismo , Trifosfato de Adenosina/metabolismo , Transporte de Elétrons/fisiologia , Humanos , Consumo de Oxigênio/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
4.
PLoS Genet ; 13(3): e1006620, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28267784

RESUMO

Tubulointerstitial kidney disease is an important cause of progressive renal failure whose aetiology is incompletely understood. We analysed a large pedigree with maternally inherited tubulointerstitial kidney disease and identified a homoplasmic substitution in the control region of the mitochondrial genome (m.547A>T). While mutations in mtDNA coding sequence are a well recognised cause of disease affecting multiple organs, mutations in the control region have never been shown to cause disease. Strikingly, our patients did not have classical features of mitochondrial disease. Patient fibroblasts showed reduced levels of mitochondrial tRNAPhe, tRNALeu1 and reduced mitochondrial protein translation and respiration. Mitochondrial transfer demonstrated mitochondrial transmission of the defect and in vitro assays showed reduced activity of the heavy strand promoter. We also identified further kindreds with the same phenotype carrying a homoplasmic mutation in mitochondrial tRNAPhe (m.616T>C). Thus mutations in mitochondrial DNA can cause maternally inherited renal disease, likely mediated through reduced function of mitochondrial tRNAPhe.


Assuntos
DNA Mitocondrial/genética , Nefropatias/genética , Túbulos Renais/patologia , Mutação , Acetilglucosaminidase/urina , Biópsia , Feminino , Fibroblastos/metabolismo , Ligação Genética , Humanos , Leucina/química , Masculino , Mitocôndrias/metabolismo , Consumo de Oxigênio , Linhagem , Fenótipo , Fenilalanina/química , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Músculo Quadríceps/patologia , RNA de Transferência/genética
5.
J Hepatol ; 66(5): 919-929, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28126468

RESUMO

BACKGROUND & AIMS: Chronic hepatitis C is a global health problem with an estimated 170 million hepatitis C virus (HCV) infected individuals at risk of progressive liver disease and hepatocellular carcinoma (HCC). Autotaxin (ATX, gene name: ENPP2) is a phospholipase with diverse roles in the physiological and pathological processes including inflammation and oncogenesis. Clinical studies have reported increased ATX expression in chronic hepatitis C, however, the pathways regulating ATX and its role in the viral life cycle are not well understood. METHODS: In vitro hepatocyte and ex vivo liver culture systems along with chimeric humanized liver mice and HCC tissue enabled us to assess the interplay between ATX and the HCV life cycle. RESULTS: HCV infection increased hepatocellular ATX RNA and protein expression. HCV infection stabilizes hypoxia inducible factors (HIFs) and we investigated a role for these transcription factors to regulate ATX. In vitro studies show that low oxygen increases hepatocellular ATX expression and transcriptome analysis showed a positive correlation between ATX mRNA levels and hypoxia gene score in HCC tumour tissue associated with HCV and other aetiologies. Importantly, inhibiting ATX-lysophosphatidic acid (LPA) signalling reduced HCV replication, demonstrating a positive role for this phospholipase in the viral life cycle. LPA activates phosphoinositide-3-kinase that stabilizes HIF-1α and inhibiting the HIF signalling pathway abrogates the pro-viral activity of LPA. CONCLUSIONS: Our data support a model where HCV infection increases ATX expression which supports viral replication and HCC progression. LAY SUMMARY: Chronic hepatitis C is a global health problem with infected individuals at risk of developing liver disease that can progress to hepatocellular carcinoma. Autotaxin generates the biologically active lipid lysophosphatidic acid that has been reported to play a tumorigenic role in a wide number of cancers. In this study we show that hepatitis C virus infection increases autotaxin expression via hypoxia inducible transcription factor and provides an environment in the liver that promotes fibrosis and liver injury. Importantly, we show a new role for lysophosphatidic acid in positively regulating hepatitis C virus replication.


Assuntos
Hepacivirus/fisiologia , Diester Fosfórico Hidrolases/fisiologia , Receptores de Ácidos Lisofosfatídicos/fisiologia , Replicação Viral , Animais , Linhagem Celular , Hepatite C Crônica/complicações , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Neoplasias Hepáticas/etiologia , Camundongos , Diester Fosfórico Hidrolases/genética , Regiões Promotoras Genéticas , RNA Mensageiro/análise , Transdução de Sinais
7.
Circ Res ; 112(12): 1583-91, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23564640

RESUMO

RATIONALE: Hypoxia followed by reoxygenation promotes inflammation by activating nuclear factor κB transcription factors in endothelial cells (ECs). This process involves modification of the signaling intermediary tumor necrosis factor receptor-associated factor 6 with polyubiquitin chains. Thus, cellular mechanisms that suppress tumor necrosis factor receptor-associated factor 6 ubiquitination are potential therapeutic targets to reduce inflammation in hypoxic tissues. OBJECTIVE: In this study, we tested the hypothesis that endothelial activation in response to hypoxia-reoxygenation can be influenced by Cezanne, a deubiquitinating enzyme that cleaves ubiquitin from specific modified proteins. METHODS AND RESULTS: Studies of cultured ECs demonstrated that hypoxia (1% oxygen) induced Cezanne via p38 mitogen-activated protein kinase-dependent transcriptional and post-transcriptional mechanisms. Hypoxia-reoxygenation had minimal effects on proinflammatory signaling in unmanipulated ECs but significantly enhanced Lys63 polyubiquitination of tumor necrosis factor receptor-associated factor 6, activation of nuclear factor κB, and expression of inflammatory genes after silencing of Cezanne. Thus, although hypoxia primed cells for inflammatory activation, it simultaneously induced Cezanne, which impeded signaling to nuclear factor κB by suppressing tumor necrosis factor receptor-associated factor 6 ubiquitination. Similarly, ischemia induced Cezanne in the murine kidney in vascular ECs, glomerular ECs, podocytes, and epithelial cells, and genetic deletion of Cezanne enhanced renal inflammation and injury in murine kidneys exposed to ischemia followed by reperfusion. CONCLUSIONS: We conclude that inflammatory responses to ischemia are controlled by a balance between ubiquitination and deubiquitination, and that Cezanne is a key regulator of this process. Our observations have important implications for therapeutic targeting of inflammation and injury during ischemia-reperfusion.


Assuntos
Endopeptidases/metabolismo , Células Endoteliais/enzimologia , Inflamação/prevenção & controle , Rim/irrigação sanguínea , Traumatismo por Reperfusão/enzimologia , Fator 6 Associado a Receptor de TNF/metabolismo , Animais , Hipóxia Celular , Células Cultivadas , Modelos Animais de Doenças , Endopeptidases/deficiência , Endopeptidases/genética , Células Endoteliais/imunologia , Humanos , Inflamação/enzimologia , Inflamação/genética , Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Oxigênio/metabolismo , Interferência de RNA , Ratos , Ratos Endogâmicos F344 , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/imunologia , Transdução de Sinais , Fator 6 Associado a Receptor de TNF/genética , Fatores de Tempo , Transcrição Gênica , Transfecção , Ubiquitinação , Regulação para Cima , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
J Enzyme Inhib Med Chem ; 30(5): 689-721, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25347767

RESUMO

The hypoxic areas of solid cancers represent a negative prognostic factor irrespective of which treatment modality is chosen for the patient. Still, after almost 80 years of focus on the problems created by hypoxia in solid tumours, we still largely lack methods to deal efficiently with these treatment-resistant cells. The consequences of this lack may be serious for many patients: Not only is there a negative correlation between the hypoxic fraction in tumours and the outcome of radiotherapy as well as many types of chemotherapy, a correlation has been shown between the hypoxic fraction in tumours and cancer metastasis. Thus, on a fundamental basis the great variety of problems related to hypoxia in cancer treatment has to do with the broad range of functions oxygen (and lack of oxygen) have in cells and tissues. Therefore, activation-deactivation of oxygen-regulated cascades related to metabolism or external signalling are important areas for the identification of mechanisms as potential targets for hypoxia-specific treatment. Also the chemistry related to reactive oxygen radicals (ROS) and the biological handling of ROS are part of the problem complex. The problem is further complicated by the great variety in oxygen concentrations found in tissues. For tumour hypoxia to be used as a marker for individualisation of treatment there is a need for non-invasive methods to measure oxygen routinely in patient tumours. A large-scale collaborative EU-financed project 2009-2014 denoted METOXIA has studied all the mentioned aspects of hypoxia with the aim of selecting potential targets for new hypoxia-specific therapy and develop the first stage of tests for this therapy. A new non-invasive PET-imaging method based on the 2-nitroimidazole [(18)F]-HX4 was found to be promising in a clinical trial on NSCLC patients. New preclinical models for testing of the metastatic potential of cells were developed, both in vitro (2D as well as 3D models) and in mice (orthotopic grafting). Low density quantitative real-time polymerase chain reaction (qPCR)-based assays were developed measuring multiple hypoxia-responsive markers in parallel to identify tumour hypoxia-related patterns of gene expression. As possible targets for new therapy two main regulatory cascades were prioritised: The hypoxia-inducible-factor (HIF)-regulated cascades operating at moderate to weak hypoxia (<1% O(2)), and the unfolded protein response (UPR) activated by endoplasmatic reticulum (ER) stress and operating at more severe hypoxia (<0.2%). The prioritised targets were the HIF-regulated proteins carbonic anhydrase IX (CAIX), the lactate transporter MCT4 and the PERK/eIF2α/ATF4-arm of the UPR. The METOXIA project has developed patented compounds targeting CAIX with a preclinical documented effect. Since hypoxia-specific treatments alone are not curative they will have to be combined with traditional anti-cancer therapy to eradicate the aerobic cancer cell population as well.


Assuntos
Descoberta de Drogas , Neoplasias/tratamento farmacológico , Animais , Hipóxia Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Metástase Neoplásica/tratamento farmacológico , Metástase Neoplásica/patologia , Neoplasias/patologia , Relação Estrutura-Atividade
9.
Biochim Biophys Acta Mol Basis Dis ; : 167282, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38909850

RESUMO

CHCHD4 (MIA40) is a central component of the mitochondrial disulfide relay system (DRS), is essential and evolutionarily conserved. Previously, we have shown CHCHD4 to be a critical regulator of tumour cell growth. Here, we use genome-wide CRISPR/Cas9 and SILAC proteomic analyses to delineate mechanisms of CHCHD4 essentiality in cancer. We identify a short-list of common essential genes/proteins associated with CHCHD4 essentiality in tumour cells, which includes subunits of complex I that are known DRS substrates, and genes/proteins involved in key metabolic pathways. Our study highlights a range of nuclear encoded mitochondrial genes essential for CHCHD4-regulated tumour cell growth.

10.
Res Sq ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38853928

RESUMO

3D cellular-specific epigenetic and transcriptomic reprogramming is critical to organogenesis and tumorigenesis. Here we dissect the distinct cell fitness in 2D (normoxia vs. chronic hypoxia) vs 3D (normoxia) culture conditions. We identify over 600 shared essential genes and additional context-specific fitness genes and pathways. Knockout of the VHL-HIF1 pathway results in incompatible fitness defects under normoxia vs. 1% oxygen or 3D culture conditions. Moreover, deletion of each of the mitochondrial respiratory electron transport chain complex has distinct fitness outcomes. Notably, multicellular organogenesis signaling pathways including TGFß-SMAD specifically constrict the uncontrolled cell proliferation in 3D while inactivation of epigenetic modifiers (Bcor, Kmt2d, Mettl3 and Mettl14) has opposite outcomes in 2D vs. 3D. We further identify a 3D-dependent synthetic lethality with partial loss of Prmt5 due to a reduction of Mtap expression resulting from 3D-specific epigenetic reprogramming. Our study highlights unique epigenetic, metabolic and organogenesis signaling dependencies under different cellular settings.

11.
bioRxiv ; 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37205496

RESUMO

Ischemic stroke results in a loss of tissue homeostasis and integrity, the underlying pathobiology of which stems primarily from the depletion of cellular energy stores and perturbation of available metabolites 1 . Hibernation in thirteen-lined ground squirrels (TLGS), Ictidomys tridecemlineatus , provides a natural model of ischemic tolerance as these mammals undergo prolonged periods of critically low cerebral blood flow without evidence of central nervous system (CNS) damage 2 . Studying the complex interplay of genes and metabolites that unfolds during hibernation may provide novel insights into key regulators of cellular homeostasis during brain ischemia. Herein, we interrogated the molecular profiles of TLGS brains at different time points within the hibernation cycle via RNA sequencing coupled with untargeted metabolomics. We demonstrate that hibernation in TLGS leads to major changes in the expression of genes involved in oxidative phosphorylation and this is correlated with an accumulation of the tricarboxylic acid (TCA) cycle intermediates citrate, cis-aconitate, and α-ketoglutarate-αKG. Integration of the gene expression and metabolomics datasets led to the identification of succinate dehydrogenase (SDH) as the critical enzyme during hibernation, uncovering a break in the TCA cycle at that level. Accordingly, the SDH inhibitor dimethyl malonate (DMM) was able to rescue the effects of hypoxia on human neuronal cells in vitro and in mice subjected to permanent ischemic stroke in vivo . Our findings indicate that studying the regulation of the controlled metabolic depression that occurs in hibernating mammals may lead to novel therapeutic approaches capable of increasing ischemic tolerance in the CNS.

12.
J Hepatol ; 56(4): 803-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22178269

RESUMO

BACKGROUND & AIMS: Hepatitis C virus (HCV) causes progressive liver disease and is a major risk factor for the development of hepatocellular carcinoma (HCC). However, the role of infection in HCC pathogenesis is poorly understood. We investigated the effect(s) of HCV infection and viral glycoprotein expression on hepatoma biology to gain insights into the development of HCV associated HCC. METHODS: We assessed the effect(s) of HCV and viral glycoprotein expression on hepatoma polarity, migration and invasion. RESULTS: HCV glycoproteins perturb tight and adherens junction protein expression, and increase hepatoma migration and expression of epithelial to mesenchymal transition markers Snail and Twist via stabilizing hypoxia inducible factor-1α (HIF-1α). HIF-1α regulates many genes involved in tumor growth and metastasis, including vascular endothelial growth factor (VEGF) and transforming growth factor-beta (TGF-ß). Neutralization of both growth factors shows different roles for VEGF and TGFß in regulating hepatoma polarity and migration, respectively. Importantly, we confirmed these observations in virus infected hepatoma and primary human hepatocytes. Inhibition of HIF-1α reversed the effect(s) of infection and glycoprotein expression on hepatoma permeability and migration and significantly reduced HCV replication, demonstrating a dual role for HIF-1α in the cellular processes that are deregulated in many human cancers and in the viral life cycle. CONCLUSIONS: These data provide new insights into the cancer-promoting effects of HCV infection on HCC migration and offer new approaches for treatment.


Assuntos
Carcinoma Hepatocelular/fisiopatologia , Movimento Celular/fisiologia , Hepacivirus/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Neoplasias Hepáticas/fisiopatologia , Replicação Viral/fisiologia , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Polaridade Celular/fisiologia , Progressão da Doença , Glicoproteínas/fisiologia , Hepatite C/patologia , Hepatite C/fisiopatologia , Humanos , Neoplasias Hepáticas/patologia , Junções Íntimas/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Fator A de Crescimento do Endotélio Vascular/fisiologia
13.
Mol Cancer ; 10: 89, 2011 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-21791076

RESUMO

BACKGROUND: 209 000 new cases of renal carcinoma are diagnosed each year worldwide and new therapeutic targets are urgently required. The great majority of clear cell renal cancer involves inactivation of VHL, which acts as a gatekeeper tumour suppressor gene in renal epithelial cells. However how VHL exerts its tumour suppressor function remains unclear. A gene expression microarray comparing RCC10 renal cancer cells expressing either VHL or an empty vector was used to identify novel VHL regulated genes. FINDINGS: NMU (Neuromedin U) is a neuropeptide that has been implicated in energy homeostasis and tumour progression. Here we show for the first time that VHL loss-of-function results in dramatic upregulation of NMU expression in renal cancer cells. The effect of VHL inactivation was found to be mediated via activation of Hypoxia Inducible Factor (HIF). Exposure of VHL expressing RCC cells to either hypoxia or dimethyloxalylglycine resulted in HIF activation and increased NMU expression. Conversely, suppression of HIF in VHL defective RCC cells via siRNA of HIF-α subunits or expression of Type 2C mutant VHLs reduced NMU expression levels. We also show that renal cancer cells express a functional NMU receptor (NMUR1), and that NMU stimulates migration of renal cancer cells. CONCLUSIONS: These findings suggest that NMU may act in an autocrine fashion, promoting progression of kidney cancer. Hypoxia and HIF expression are frequently observed in many non-renal cancers and are associated with a poor prognosis. Our study raises the possibility that HIF may also drive NMU expression in non-renal tumours.


Assuntos
Carcinoma de Células Renais/genética , Inativação Gênica/fisiologia , Neoplasias Renais/genética , Neuropeptídeos/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor/fisiologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Neoplasias Renais/patologia , Análise em Microsséries , Neuropeptídeos/metabolismo , Regulação para Cima , Proteína Supressora de Tumor Von Hippel-Lindau/antagonistas & inibidores
14.
Front Cell Dev Biol ; 9: 695351, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34746119

RESUMO

Mitochondria are key organelles in eukaryotic evolution that perform crucial roles as metabolic and cellular signaling hubs. Mitochondrial function and dysfunction are associated with a range of diseases, including cancer. Mitochondria support cancer cell proliferation through biosynthetic reactions and their role in signaling, and can also promote tumorigenesis via processes such as the production of reactive oxygen species (ROS). The advent of (nuclear) genome-wide CRISPR-Cas9 deletion screens has provided gene-level resolution of the requirement of nuclear-encoded mitochondrial genes (NEMGs) for cancer cell viability (essentiality). More recently, it has become apparent that the essentiality of NEMGs is highly dependent on the cancer cell context. In particular, key tumor microenvironmental factors such as hypoxia, and changes in nutrient (e.g., glucose) availability, significantly influence the essentiality of NEMGs. In this mini-review we will discuss recent advances in our understanding of the contribution of NEMGs to cancer from CRISPR-Cas9 deletion screens, and discuss emerging concepts surrounding the context-dependent nature of mitochondrial gene essentiality.

15.
Laryngoscope ; 131(6): E1918-E1925, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33341953

RESUMO

OBJECTIVE: The COVID-19 pandemic has led to unprecedented demands on healthcare with many requiring intubation. Tracheostomy insertion has often been delayed and the enduring effects of this on voice, swallow, and airway outcomes in COVID-19 tracheostomy patients are unknown. The aim of this study was to prospectively assess these outcomes in this patient cohort following hospital discharge. METHODS: All COVID-19 patients who had undergone tracheostomy insertion, and were subsequently decannulated, were identified at our institution and followed up 2 months post-discharge. Patient-reported (PROMS) and clinician-reported outcome measures, endoscopic examination, and spirometry were used to assess voice, swallow, and airway outcomes. RESULTS: Forty-one patients were included in the study with a mean age of 56 years and male:female ratio of 28:13. Average duration of endotracheal intubation was 24 days and 63.4% of tracheostomies were performed at day 21 to 35 of intubation. 53.7% had an abnormal GRBAS score and 30% reported abnormal swallow on EAT-10 questionnaire. 81.1% had normal endoscopic examination of the larynx, however, positive endoscopic findings correlated with the patient self-reported VHI-10 (P = .036) and EAT-10 scores (P = .027). 22.5% had spirometric evidence of fixed upper airway obstruction using the Expiratory-Disproportion Index (EDI) and Spearman correlation analysis showed a positive trend between abnormal endoscopic findings and EDI scores over 50 (P < .0001). CONCLUSION: The preliminary results of this study reveal a high incidence of laryngeal injury among patients who underwent intubation and tracheostomy insertion during the COVID-19 pandemic. As these patients continue to be followed up, the evolution of these complications will be studied. LEVEL OF EVIDENCE: 3 Laryngoscope, 131:E1918-E1925, 2021.


Assuntos
COVID-19/cirurgia , Deglutição/fisiologia , Complicações Pós-Operatórias/fisiopatologia , Ventilação Pulmonar/fisiologia , Traqueostomia , Qualidade da Voz/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Obstrução das Vias Respiratórias/diagnóstico , Obstrução das Vias Respiratórias/fisiopatologia , COVID-19/fisiopatologia , Correlação de Dados , Transtornos de Deglutição/diagnóstico , Transtornos de Deglutição/fisiopatologia , Feminino , Seguimentos , Humanos , Intubação Intratraqueal , Laringe/lesões , Laringe/fisiopatologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Espirometria , Resultado do Tratamento , Adulto Jovem
16.
Commun Biol ; 4(1): 615, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34021238

RESUMO

Mitochondria are typically essential for the viability of eukaryotic cells, and utilize oxygen and nutrients (e.g. glucose) to perform key metabolic functions that maintain energetic homeostasis and support proliferation. Here we provide a comprehensive functional annotation of mitochondrial genes that are essential for the viability of a large panel (625) of tumour cell lines. We perform genome-wide CRISPR/Cas9 deletion screening in normoxia-glucose, hypoxia-glucose and normoxia-galactose conditions, and identify both unique and overlapping genes whose loss influences tumour cell viability under these different metabolic conditions. We discover that loss of certain oxidative phosphorylation (OXPHOS) genes (e.g. SDHC) improves tumour cell growth in hypoxia-glucose, but reduces growth in normoxia, indicating a metabolic switch in OXPHOS gene function. Moreover, compared to normoxia-glucose, loss of genes involved in energy-consuming processes that are energetically demanding, such as translation and actin polymerization, improve cell viability under both hypoxia-glucose and normoxia-galactose. Collectively, our study defines mitochondrial gene essentiality in tumour cells, highlighting that essentiality is dependent on the metabolic environment, and identifies routes for regulating tumour cell viability in hypoxia.


Assuntos
Sistemas CRISPR-Cas , Proliferação de Células , Genes Mitocondriais , Genoma Mitocondrial , Hipóxia/fisiopatologia , Mitocôndrias/genética , Neoplasias/patologia , Glicólise , Humanos , Mitocôndrias/patologia , Neoplasias/genética , Fosforilação Oxidativa , Células Tumorais Cultivadas
18.
Commun Biol ; 3(1): 376, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32665623

RESUMO

Viral replication is defined by the cellular microenvironment and one key factor is local oxygen tension, where hypoxia inducible factors (HIFs) regulate the cellular response to oxygen. Human immunodeficiency virus (HIV) infected cells within secondary lymphoid tissues exist in a low-oxygen or hypoxic environment in vivo. However, the majority of studies on HIV replication and latency are performed under laboratory conditions where HIFs are inactive. We show a role for HIF-2α in restricting HIV transcription via direct binding to the viral promoter. Hypoxia reduced tumor necrosis factor or histone deacetylase inhibitor, Romidepsin, mediated reactivation of HIV and inhibiting HIF signaling-pathways reversed this phenotype. Our data support a model where the low-oxygen environment of the lymph node may suppress HIV replication and promote latency. We identify a mechanism that may contribute to the limited efficacy of latency reversing agents in reactivating HIV and suggest new strategies to control latent HIV-1.


Assuntos
HIV-1/fisiologia , Latência Viral/fisiologia , Replicação Viral/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Microambiente Celular , Citometria de Fluxo , Humanos , Hipóxia/metabolismo , Hipóxia/virologia , Tecido Linfoide/metabolismo , Tecido Linfoide/virologia , Oxigênio , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase em Tempo Real , Transcrição Viral/fisiologia , Ativação Viral
19.
Expert Rev Mol Med ; 11: e26, 2009 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-19709449

RESUMO

The central component of hypoxia sensing in the cell is the hypoxia-inducible factor (HIF) transcriptional complex. HIF activity is deregulated in many human cancers, especially those that are highly hypoxic. Hypoxic tumour cells are usually resistant to radiotherapy and most conventional chemotherapeutic agents, rendering them highly aggressive and metastatic. Overexpression of HIF-alpha, the regulatory subunit of HIF, is associated with increased vascular density, severity of tumour grade, treatment failure and a poor prognostic outcome with conventional therapies. Therefore HIF is an attractive, although challenging, therapeutic target, and several different strategies have been developed to target HIF directly or indirectly in recent years. This review outlines the preclinical and clinical advances in this arena and discusses which cancers may benefit from HIF-targeted therapy.


Assuntos
Antineoplásicos/uso terapêutico , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias/tratamento farmacológico , Animais , Hipóxia Celular , Humanos , Neoplasias/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Transdução de Sinais/fisiologia , Proteína Supressora de Tumor p53/metabolismo
20.
Front Oncol ; 9: 23, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30729098

RESUMO

[This corrects the article DOI: 10.3389/fonc.2017.00071.].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA