Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Microbiol ; 21(7): 2402-2414, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30972938

RESUMO

In tropical and subtropical oceanic surface waters phosphate scarcity can limit microbial productivity. However, these environments also have bioavailable forms of phosphorus incorporated into dissolved organic matter (DOM) that microbes with the necessary transport and hydrolysis metabolic pathways can access to supplement their phosphorus requirements. In this study we evaluated how the environment shapes the abundance and taxonomic distribution of the bacterial carbon-phosphorus (C-P) lyase pathway, an enzyme complex evolved to extract phosphate from phosphonates. Phosphonates are organophosphorus compounds characterized by a highly stable C-P bond and are enriched in marine DOM. Similar to other known bacterial adaptions to low phosphate environments, C-P lyase was found to become more prevalent as phosphate concentrations decreased. C-P lyase was particularly enriched in the Mediterranean Sea and North Atlantic Ocean, two regions that feature sustained periods of phosphate depletion. In these regions, C-P lyase was prevalent in several lineages of Alphaproteobacteria (Pelagibacter, SAR116, Roseobacter and Rhodospirillales), Gammaproteobacteria, and Actinobacteria. The global scope of this analysis supports previous studies that infer phosphonate catabolism via C-P lyase is an important adaptive strategy implemented by bacteria to alleviate phosphate limitation and expands the known geographic extent and taxonomic affiliation of this metabolic pathway in the ocean.


Assuntos
Actinobacteria/metabolismo , Liases/metabolismo , Fosfatos/metabolismo , Proteobactérias/metabolismo , Roseobacter/metabolismo , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Oceano Atlântico , Carbono/metabolismo , Liases/genética , Mar Mediterrâneo , Organofosfonatos/metabolismo , Compostos Organofosforados/metabolismo , Fosfatos/análise , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/isolamento & purificação , Roseobacter/classificação , Roseobacter/genética , Roseobacter/isolamento & purificação , Água do Mar/análise , Água do Mar/microbiologia
2.
Phys Rev Lett ; 117(18): 187202, 2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27835005

RESUMO

Forbidden transitions between energy levels typically involve violation of selection rules imposed by symmetry and/or conservation laws. A nanomagnet tunneling between up and down states violates angular momentum conservation because of broken rotational symmetry. Here we report observations of highly forbidden transitions between spin states in a Ni_{4} single-molecule magnet in which a single photon can induce the spin to change by several times ℏ, nearly reversing the direction of the spin. These observations are understood as tunneling-assisted transitions that lift the standard Δm=±1 selection rule for single-photon transitions. These transitions are observed at low applied fields, where tunneling is dominated by the molecule's intrinsic anisotropy and the field acts as a perturbation. Such transitions can be exploited to create macroscopic superposition states that are not typically accessible through single-photon Δm=±1 transitions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA