Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Eukaryot Cell ; 13(1): 77-86, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24186950

RESUMO

Parasitic protozoa of the flagellate order Kinetoplastida represent one of the deepest branches of the eukaryotic tree. Among this group of organisms, the mechanism of RNA interference (RNAi) has been investigated in Trypanosoma brucei and to a lesser degree in Leishmania (Viannia) spp. The pathway is triggered by long double-stranded RNA (dsRNA) and in T. brucei requires a set of five core genes, including a single Argonaute (AGO) protein, T. brucei AGO1 (TbAGO1). The five genes are conserved in Leishmania (Viannia) spp. but are absent in other major kinetoplastid species, such as Trypanosoma cruzi and Leishmania major. In T. brucei small interfering RNAs (siRNAs) are methylated at the 3' end, whereas Leishmania (Viannia) sp. siRNAs are not. Here we report that T. brucei HEN1, an ortholog of the metazoan HEN1 2'-O-methyltransferases, is required for methylation of siRNAs. Loss of TbHEN1 causes a reduction in the length of siRNAs. The shorter siRNAs in hen1(-/-) parasites are single stranded and associated with TbAGO1, and a subset carry a nontemplated uridine at the 3' end. These findings support a model wherein TbHEN1 methylates siRNA 3' ends after they are loaded into TbAGO1 and this methylation protects siRNAs from uridylation and 3' trimming. Moreover, expression of TbHEN1 in Leishmania (Viannia) panamensis did not result in siRNA 3' end methylation, further emphasizing mechanistic differences in the trypanosome and Leishmania RNAi mechanisms.


Assuntos
Metiltransferases/metabolismo , Proteínas de Protozoários/metabolismo , Processamento Pós-Transcricional do RNA , RNA de Protozoário/metabolismo , RNA Interferente Pequeno/metabolismo , Trypanosoma brucei brucei/metabolismo , Sequência de Aminoácidos , Leishmania/genética , Leishmania/metabolismo , Metiltransferases/química , Metiltransferases/genética , Dados de Sequência Molecular , Mutação , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Trypanosoma brucei brucei/enzimologia
2.
Mol Microbiol ; 87(3): 580-93, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23217017

RESUMO

Among trypanosomatid protozoa the mechanism of RNA interference (RNAi) has been investigated in Trypanosoma brucei and to a lesser extent in Leishmania braziliensis. Although these two parasitic organisms belong to the same family, they are evolutionarily distantly related raising questions about the conservation of the RNAi pathway. Here we carried out an in-depth analysis of small interfering RNAs (siRNAs) associated with L. braziliensis Argonaute1 (LbrAGO1). In contrast to T. brucei, Leishmania siRNAs are sensitive to 3' end oxidation, indicating the absence of blocking groups, and the Leishmania genome does not code for a HEN1 RNA 2'-O-methyltransferase, which modifies small RNA 3' ends. Consistent with this observation, ~20% of siRNA 3' ends carry non-templated uridines. Thus siRNA biogenesis, and most likely their metabolism, is different in these organisms. Similarly to T. brucei, putative mobile elements and repeats constitute the major Leishmania siRNA-producing loci and AGO1 ablation leads to accumulation of long transcripts derived from putative mobile elements. However, contrary to T. brucei, no siRNAs were detected from other genomic regions with the potential to form double-stranded RNA, namely sites of convergent transcription and inverted repeats. Thus, our results indicate that organism-specific diversification has occurred in the RNAi pathway during evolution of the trypanosomatid lineage.


Assuntos
Variação Genética , Leishmania braziliensis/genética , RNA Interferente Pequeno/genética , Proteínas Argonautas/genética , Regulação da Expressão Gênica , RNA Interferente Pequeno/química , Trypanosoma brucei brucei/genética
3.
Melanoma Res ; 18(3): 172-83, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18477891

RESUMO

Trypanosoma cruzi infection is known to confer resistance to tumor development in mice, and in-vitro studies have shown the toxic effects of parasite extracts on cancer cell cultures. Investigations in which T. cruzi molecules exhibit antitumor activity have just begun. Here, we used a tumorigenic cell line Tm5, derived from mouse melanocytes melan-a, to test the effect of J18, a recombinant protein based on T. cruzi surface molecule gp82 fused to glutathione-S-transferase (GST). J18 induced actin cytoskeleton disruption in Tm5 but not in melan-a cells. Several changes indicative of apoptosis were detected in Tm5 melanoma cells but not in melan-a cells treated with J18, such as the flipping of phosphatidylserine from the inner to the external side of the plasma membrane, altered nuclear morphology, DNA fragmentation, increase in mitochondria depolarization, and in caspase-3 activity. Retention of NF-kappaB in the cytoplasm was another alteration observed specifically in J18-treated Tm5 cells. No such alterations were found in Tm5 cells treated with GST. In-vivo experiments showed that C57BL/6 mice inoculated with Tm5 cells, treated at the site of tumor cell inoculation with J18, developed tumors of smaller size than mice treated with phosphate-buffered saline or GST and survived longer.


Assuntos
Apoptose/efeitos dos fármacos , Melanoma/patologia , Proteínas de Protozoários/farmacologia , Trypanosoma cruzi , Glicoproteínas Variantes de Superfície de Trypanosoma/farmacologia , Animais , Antígenos de Superfície/farmacologia , Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Proteínas Recombinantes/farmacologia , Células Tumorais Cultivadas
4.
Int J Parasitol ; 34(7): 851-60, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15157768

RESUMO

We investigated the properties of metacyclic trypomastigotes of non-virulent Trypanosoma cruzi clone CL-14, as compared to the parental isolate CL. In contrast to the CL isolate, which produces high parasitemias in mice, metacyclic forms of clone CL-14 failed to produce patent infection. In vitro, the number of clone CL-14 parasites that entered epithelial HeLa cells, after 1 h incubation, was approximately four-fold lower than that of the CL isolate and at 72 h post-infection intracellular replication was not apparent whereas cells infected with the CL isolate contained large number of parasites replicating as amastigotes. CL isolate metacyclic forms were long and slender, with the kinetoplast localised closer to the nucleus than to the posterior end, whereas clone CL-14 parasites were shorter, with the kinetoplast very close to the posterior end. Cysteine proteinase cruzipain and trans-sialidase activities were lower in CL isolate than in clone CL-14. The surface profile was similar, except that the expression of gp82, the stage-specific glycoprotein that promotes CL isolate mucosal infection in vivo and host cell invasion in vitro, was greatly reduced on the surface of clone CL-14 metacyclic forms. Genistein, a specific inhibitor of protein tyrosine kinase, which is activated in CL isolate by binding of gp82 to its host cell receptor, did not affect host cell entry of clone CL-14. In contrast with CL isolate, the infectivity of clone CL-14 was not affected by phospholipase C inhibitor U73122 but was diminished by a combination of ionomycin plus NH(4)Cl, which releases Ca(2+) from acidic vacuoles. Internalisation of clone CL-14, but not of CL isolate, was significantly increased by treating parasites with neuraminidase, which removes sialic acid from the mucin-like surface molecule gp35/50. Taken together, our data suggest an association between the non-virulence of clone CL-14 metacyclic forms and the reduced expression of gp82, which precludes the activation of signal transduction pathways leading to effective host cell invasion.


Assuntos
Trypanosoma cruzi/genética , Animais , Antígenos de Protozoários/genética , Doença de Chagas/genética , Células Clonais , Cisteína Endopeptidases/metabolismo , DNA de Cinetoplasto/genética , Inibidores Enzimáticos/metabolismo , Feminino , Regulação da Expressão Gênica/genética , Genes de Protozoários , Genisteína/metabolismo , Células HeLa , Humanos , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica , Neuraminidase/metabolismo , Proteínas de Protozoários , Transdução de Sinais/genética , Trypanosoma cruzi/ultraestrutura , Virulência
5.
Mol Biochem Parasitol ; 184(1): 55-8, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22542486

RESUMO

RNA interference (RNAi), used as a tool, has revolutionized the studies of gene function. Long stem-loop dsRNA has been proven the most effective trigger for down-regulating target transcripts in RNAi-positive trypanosomatid parasites. Here we describe a protocol for constructing plasmids that produce long stem-loops by using a single cloning step. Inverted repeats are first obtained by self-ligation of PCR products that contain a randomized segment at one of their ends and then inserted in a plasmid vector. The random sequences create the loop (or "stuffer") of the hairpin. This methodology was tested in Leishmania (Viannia) braziliensis to constitutively knock down the mRNAs for the well-studied paraflagellar rod protein 1 and 2 (PFR1 and PFR2) genes and revealed that mRNA cleavage products are unusually stable in these parasites. The protocol is suitable for any plasmid (for constitutive or inducible expression) and for any organism in which long stem-loops can be used to elicit RNAi.


Assuntos
Clonagem Molecular/métodos , Interferência de RNA , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , Regulação para Baixo , Inativação Gênica , Vetores Genéticos , Leishmania braziliensis/genética , Conformação de Ácido Nucleico , Plasmídeos , Proteínas de Protozoários/biossíntese , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/genética
6.
PLoS Negl Trop Dis ; 6(10): e1804, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056658

RESUMO

BACKGROUND: Diversity of T. cruzi strains is a central problem in Chagas disease research because of its correlation with the wide range of clinical manifestations and the biogeographical parasite distribution. The role played by parasite microdiversity in Chagas disease epidemiology is still debatable. Also awaits clarification whether such diversity is associated with the outcome of oral T. cruzi infection, responsible for frequent outbreaks of acute Chagas disease. METHODS AND FINDINGS: We addressed the impact of microdiversity in oral T. cruzi infection, by comparative analysis of two strains, Y30 and Y82, both derived from Y strain, a widely used experimental model. Network genealogies of four nuclear genes (SSU rDNA, actin, DHFR-TS, EF1α) revealed that Y30 is closely related to Discrete Typing Unit TcII while Y82 is more closely related to TcVI, a group containing hybrid strains. Nevertheless, excepting one A-G transition at position 1463, Y30 and Y82 SSU rDNAs were identical. Y82 strain, expressing the surface molecule gp82, infected mice orally more efficiently than Y30, which expresses a related gp30 molecule. Both molecules are involved in lysosome exocytosis-dependent host cell invasion, but exhibit differential gastric mucin-binding capacity, a property critical for parasite migration toward the gastric mucosal epithelium. Upon oral infection of mice, the number of Y30 and Y82 parasites in gastric epithelial cells differed widely. CONCLUSIONS: We conclude that metacyclic forms of gp82-expressing Y82 strain, closely related to TcVI, are better adapted than Y30 strain (TcII) to traverse the stomach mucous layer and establish oral route infection. The efficiency to infect target cell is the same because gp82 and gp30 strains have similar invasion-promoting properties. Unknown is whether differences in Y30 and Y82 are natural parasite adaptations or a product of lab-induced evolution by differential selection along the 60 years elapsed since the Y strain isolation.


Assuntos
Doença de Chagas/patologia , Doença de Chagas/parasitologia , Variação Genética , Trypanosoma cruzi/genética , Trypanosoma cruzi/patogenicidade , Animais , DNA de Protozoário/química , DNA de Protozoário/genética , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Proteínas de Protozoários/genética , Análise de Sequência de DNA , Trypanosoma cruzi/isolamento & purificação , Virulência
7.
Trends Parasitol ; 27(7): 321-7, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21497553

RESUMO

A new RNA world has emerged in the past 10 years with the discovery of a plethora of 20- to 30-nucleotide long small RNAs that are involved in various gene silencing mechanisms. These small RNAs have considerably changed our view of the regulation of gene expression in eukaryotic organisms, with a major shift towards epigenetic and post-transcriptional mechanisms. In this article, we focus on the striking diversity of small silencing RNAs that have been identified in several protozoan parasites and their potential biological role.


Assuntos
Eucariotos/genética , Eucariotos/metabolismo , Inativação Gênica/fisiologia , RNA Interferente Pequeno/imunologia , Animais , RNA Interferente Pequeno/genética
8.
PLoS Negl Trop Dis ; 4(3): e613, 2010 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-20209152

RESUMO

Oral infection by Trypanosoma cruzi has been the primary cause of recent outbreaks of acute Chagas' diseases. This route of infection may involve selective binding of the metacyclic trypomastigote surface molecule gp82 to gastric mucin as a first step towards invasion of the gastric mucosal epithelium and subsequent systemic infection. Here we addressed that question by performing in vitro and in vivo experiments. A recombinant protein containing the complete gp82 sequence (J18), a construct lacking the gp82 central domain (J18*), and 20-mer synthetic peptides based on the gp82 central domain, were used for gastric mucin binding and HeLa cell invasion assays, or for in vivo experiments. Metacyclic trypomastigotes and J18 bound to gastric mucin whereas J18* failed to bind. Parasite or J18 binding to submaxillary mucin was negligible. HeLa cell invasion by metacyclic forms was not affected by gastric mucin but was inhibited in the presence of submaxillary mucin. Of peptides tested for inhibition of J18 binding to gastric mucin, the inhibitory peptide p7 markedly reduced parasite invasion of HeLa cells in the presence of gastric mucin. Peptide p7*, with the same composition as p7 but with a scrambled sequence, had no effect. Mice fed with peptide p7 before oral infection with metacyclic forms developed lower parasitemias than mice fed with peptide p7*. Our results indicate that selective binding of gp82 to gastric mucin may direct T. cruzi metacyclic trypomastigotes to stomach mucosal epithelium in oral infection.


Assuntos
Mucinas Gástricas/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/patogenicidade , Glicoproteínas Variantes de Superfície de Trypanosoma/metabolismo , Fatores de Virulência/metabolismo , Animais , Adesão Celular , Doença de Chagas/parasitologia , Células Epiteliais/parasitologia , Feminino , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Ligação Proteica , Suínos
9.
Infect Immun ; 75(7): 3264-70, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17438027

RESUMO

A member of the Trypanosoma cruzi gp82 family, expressed on metacyclic trypomastigote surface and identified by monoclonal antibody (MAb) 3F6, plays a key role in host cell invasion. Apart from the gp82 defined by MAb 3F6, no information is available on members of this protein family. From cDNA clones encoding gp82 proteins sharing 59.1% sequence identity, we produced the recombinant proteins J18 and C03, the former containing and the latter lacking the epitope for MAb 3F6. Polyclonal antibodies to J18 and C03 proteins were generated and used, along with MAb 3F6, to analyze the expression and cellular localization of gp82 family members in metacyclic forms of CL and G strains, which belong to highly divergent genetic groups. By two-dimensional gel electrophoresis and immunoblotting, molecules of 82 to 86 kDa, focusing at pH 4.6 to 5.4, and molecules of 72 to 88 kDa, focusing at pH 4.9 to 5.7, were visualized in CL and G strains, respectively. Flow cytometry and microscopic analysis revealed in both strains similar expression of MAb 3F6-reactive gp82 in live and permeabilized parasites, indicating its surface localization. The reaction of live parasites of both strains with anti-J18 antibodies was weaker than with MAb 3F6 and was increased by permeabilization. Anti-C03 antibodies bound predominantly to flagellar components in permeabilized G strain parasites, but in the CL strain the flagellum was not the preferential target for these antibodies. Host cell invasion of metacyclic forms was inhibited by J18 protein, as well as by MAb 3F6 and anti-J18 antibodies, but not by C03 protein or anti-C03 antibodies.


Assuntos
Trypanosoma cruzi/patogenicidade , Glicoproteínas Variantes de Superfície de Trypanosoma/classificação , Glicoproteínas Variantes de Superfície de Trypanosoma/metabolismo , Sequência de Aminoácidos , Animais , Citometria de Fluxo , Células HeLa/parasitologia , Humanos , Dados de Sequência Molecular , Proteínas de Protozoários/química , Proteínas de Protozoários/classificação , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA , Trypanosoma cruzi/genética , Trypanosoma cruzi/crescimento & desenvolvimento , Trypanosoma cruzi/metabolismo , Glicoproteínas Variantes de Superfície de Trypanosoma/química , Glicoproteínas Variantes de Superfície de Trypanosoma/genética
10.
Infect Immun ; 74(10): 5522-8, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16988227

RESUMO

The disassembly of host cell actin cytoskeleton as a facilitator of Trypanosoma cruzi invasion has been reported by some authors, while other workers claim that it instead inhibits internalization of the parasite. In this study we aimed at elucidating the basis of this discrepancy. We performed experiments with metacyclic trypomastigotes of T. cruzi strains G and CL, which differ markedly in infectivity and enter target cells by engaging the surface molecules gp35/50 and gp82, respectively, which have signaling activity. Treatment of HeLa cells with the F-actin-disrupting drug cytochalasin D or latrunculin B inhibited the invasion by strain G but not the invasion by strain CL. In contrast to cells penetrated by strain CL, which were previously shown to have a disrupted actin cytoskeleton architecture, no such alteration was observed in HeLa cells invaded by strain G, and parasites were found to be closely associated with target cell actin. Coinfection with enteroinvasive Escherichia coli (EIEC), which recruits host cell actin for internalization, drastically reduced entry of strain CL into HeLa cells but not entry of strain G. In contrast to gp82 in its recombinant form, which induces disruption of F-actin and inhibits EIEC invasion, purified mucin-like gp35/50 molecules promoted an increase in EIEC uptake by HeLa cells. These data, plus the finding that drugs that interfere with mammalian cell signaling differentially affect the internalization of metacyclic forms of strains G and CL, indicate that the host cell invasion mediated by gp35/50 is associated with signaling events that favor actin recruitment, in contrast to gp82-dependent invasion, which triggers the signaling pathways leading to disassembly of F-actin.


Assuntos
Citoesqueleto de Actina/metabolismo , Mucinas/farmacologia , Trypanosoma cruzi/patogenicidade , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/ultraestrutura , Actinas/antagonistas & inibidores , Actinas/metabolismo , Actinas/ultraestrutura , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Citocalasina D/farmacologia , Células HeLa , Humanos , Mucinas/imunologia , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos , Tiazolidinas/farmacologia
11.
Infect Immun ; 71(11): 6184-91, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14573635

RESUMO

Trypanosoma cruzi metacyclic trypomastigotes invade and replicate in the gastric mucosal epithelium after oral infection. In this study we analyzed the process of infection by T. cruzi isolates deficient in the expression of gp82, the metacyclic stage-specific surface glycoprotein implicated in target cell entry in vitro and in promoting mucosal infection in mice after oral challenge. Mice infected by the oral route with metacyclic forms of gp82-deficient isolate 569 or 588 developed patent parasitemia but at greatly reduced levels compared to those infected with the gp82-expressing isolate CL. Metacyclic forms of both isolates expressed gp30, a surface glycoprotein detectable by monoclonal antibody (MAb) 3F6 directed to gp82. Otherwise, the gp82-deficient isolates displayed a surface profile similar to that of the CL isolate and also entered epithelial HeLa cells in a manner inhibitable by MAb 3F6 and dependent on the parasite signal transduction that involved the activation of protein tyrosine kinase and Ca(2+) mobilization from thapsigargin-sensitive stores. Like gp82, gp30 triggered the host cell Ca(2+) response required for parasite internalization. Purified gp30 and the recombinant gp82 inhibited HeLa cell invasion of metacyclic forms of isolates 569 and 588 by approximately 90 and approximately 70%, respectively. A cell invasion assay performed in the presence of gastric mucin, mimicking the in vivo infection, showed an inhibition of 70 to 75% in the internalization of gp82-deficient isolates but not of the CL isolate. The recombinant gp82 exhibited an adhesive capacity toward gastric mucin much higher than that of gp30. Taken together, our findings indicate that target cell entry of metacyclic trypomastigotes can be mediated either by gp82 or gp30 but that efficient mucosal infection depends on the expression of gp82.


Assuntos
Doença de Chagas/etiologia , Proteínas de Protozoários/fisiologia , Trypanosoma cruzi/química , Adulto , Animais , Cálcio/metabolismo , Feminino , Células HeLa , Humanos , Masculino , Glicoproteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Mucinas/fisiologia , Proteínas Tirosina Quinases/fisiologia , Proteínas de Protozoários/análise , Transdução de Sinais
12.
Infect Immun ; 71(3): 1561-5, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12595477

RESUMO

Metacyclic trypomastigotes of Trypanosoma cruzi express a developmentally regulated 82-kDa surface glycoprotein (gp82) that has been implicated in host cell invasion. gp82-mediated interaction of metacyclic forms with target cells induces in both cells activation of the signal transduction pathways, leading to intracellular Ca(2+) mobilization, which is required for parasite internalization. Noninfective epimastigotes do not express detectable levels of gp82 and are unable to induce a Ca(2+) response. We stably transfected epimastigotes with a T. cruzi expression vector carrying the metacyclic stage gp82 cDNA. These transfectants produced a functional gp82, which bound to and triggered a Ca(2+) response in HeLa cells, in the same manner as the metacyclic trypomastigote gp82. Such properties were not found in epimastigotes transfected with the plasmid vector alone. Epimastigotes expressing gp82 on the surface adhered to HeLa cells but were not internalized. Treatment of gp82-expressing epimastigotes with forskolin, an activator of adenylyl cyclase that increases the metacyclic trypomastigote entry into target cells, did not promote parasite internalization. P175, an intracellular tyrosine phosphorylated protein, which appears to play a role in gp82-dependent signaling cascade in metacyclic forms, was undetectable in epimastigotes, either transfected or not with pTEX-gp82. Overall, our results indicate that gp82 is required but not sufficient for target cell invasion.


Assuntos
Glicoproteínas de Membrana/fisiologia , Proteínas de Protozoários/fisiologia , Trypanosoma cruzi/patogenicidade , Adesividade , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Células HeLa , Humanos , Camundongos , Gambás , Fosforilação , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA